D. Fischette, A. Loke, Michael M. Oshima, B. Doyle, Roland Bakalski, Richard Joseph DeSantis, Anand Thiruvengadam, C. L. Wang, G. Talbot, E. Fang
{"title":"A 45nm SOI-CMOS dual-PLL processor clock system for multi-protocol I/O","authors":"D. Fischette, A. Loke, Michael M. Oshima, B. Doyle, Roland Bakalski, Richard Joseph DeSantis, Anand Thiruvengadam, C. L. Wang, G. Talbot, E. Fang","doi":"10.1109/ISSCC.2010.5433942","DOIUrl":null,"url":null,"abstract":"As processors emerge with multiple wireline interfaces for high-performance digital media, a common multi-protocol clock system is essential for cost and power reduction. We present a 45nm SOI-CMOS system that clocks an 8-lane processor I/O designed for PCI Express®, DisplayPort, and TMDS. Its ring-VCO PLL (RO-PLL) achieves 0.99ps rms jitter that can be reduced further to 0.55ps upon switching to its auxiliary LC-VCO PLL (LC-PLL). As seen in Fig. 13.2.1, the clock system contains the two independent frequency synthesizers, an arrangement of programmable dividers to provide the required frequencies, and clock distribution circuitry. Furthermore, design-for-test features are embedded to correct for PVT variation for optimum jitter performance and to monitor PLL bandwidth and jitter peaking.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"65 1","pages":"246-247"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
As processors emerge with multiple wireline interfaces for high-performance digital media, a common multi-protocol clock system is essential for cost and power reduction. We present a 45nm SOI-CMOS system that clocks an 8-lane processor I/O designed for PCI Express®, DisplayPort, and TMDS. Its ring-VCO PLL (RO-PLL) achieves 0.99ps rms jitter that can be reduced further to 0.55ps upon switching to its auxiliary LC-VCO PLL (LC-PLL). As seen in Fig. 13.2.1, the clock system contains the two independent frequency synthesizers, an arrangement of programmable dividers to provide the required frequencies, and clock distribution circuitry. Furthermore, design-for-test features are embedded to correct for PVT variation for optimum jitter performance and to monitor PLL bandwidth and jitter peaking.