Martin Glauer, A. Memariani, F. Neuhaus, T. Mossakowski, Janna Hastings
{"title":"Interpretable ontology extension in chemistry","authors":"Martin Glauer, A. Memariani, F. Neuhaus, T. Mossakowski, Janna Hastings","doi":"10.3233/sw-233183","DOIUrl":null,"url":null,"abstract":"Reference ontologies provide a shared vocabulary and knowledge resource for their domain. Manual construction and annotation enables them to maintain high quality, allowing them to be widely accepted across their community. However, the manual ontology development process does not scale for large domains. We present a new methodology for automatic ontology extension for domains in which the ontology classes have associated graph-structured annotations, and apply it to the ChEBI ontology, a prominent reference ontology for life sciences chemistry. We train Transformer-based deep learning models on the leaf node structures from the ChEBI ontology and the classes to which they belong. The models are then able to automatically classify previously unseen chemical structures, resulting in automated ontology extension. The proposed models achieved an overall F1 scores of 0.80 and above, improvements of at least 6 percentage points over our previous results on the same dataset. In addition, the models are interpretable: we illustrate that visualizing the model’s attention weights can help to explain the results by providing insight into how the model made its decisions. We also analyse the performance for molecules that have not been part of the ontology and evaluate the logical correctness of the resulting extension.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233183","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
Reference ontologies provide a shared vocabulary and knowledge resource for their domain. Manual construction and annotation enables them to maintain high quality, allowing them to be widely accepted across their community. However, the manual ontology development process does not scale for large domains. We present a new methodology for automatic ontology extension for domains in which the ontology classes have associated graph-structured annotations, and apply it to the ChEBI ontology, a prominent reference ontology for life sciences chemistry. We train Transformer-based deep learning models on the leaf node structures from the ChEBI ontology and the classes to which they belong. The models are then able to automatically classify previously unseen chemical structures, resulting in automated ontology extension. The proposed models achieved an overall F1 scores of 0.80 and above, improvements of at least 6 percentage points over our previous results on the same dataset. In addition, the models are interpretable: we illustrate that visualizing the model’s attention weights can help to explain the results by providing insight into how the model made its decisions. We also analyse the performance for molecules that have not been part of the ontology and evaluate the logical correctness of the resulting extension.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.