One-Pot Catalytic Oxidation for Transforming Eugenol to Vanillin Using ZnAl2O4 Catalyst

Damiana Nofita Birhi, Adzkia Qisthi Ismail, Elvina Dhiaul Iftitah, W. Warsito
{"title":"One-Pot Catalytic Oxidation for Transforming Eugenol to Vanillin Using ZnAl2O4 Catalyst","authors":"Damiana Nofita Birhi, Adzkia Qisthi Ismail, Elvina Dhiaul Iftitah, W. Warsito","doi":"10.21776/ub.jpacr.2021.010.03.622","DOIUrl":null,"url":null,"abstract":"In this study, ZnAl2O4 catalyst was synthesized with the capability of transforming eugenol to vanillin through One-Pot Catalytic Oxidation. ZnAl2O4 was synthesized from Zn(CH3COO)2.2H2O and Al2O3 using the wet-impregnation method, and characterized by FTIR, XRD, and SEM. One-Pot Catalytic Oxidation was conducted by heating under reflux at 150oC using nitrobenzene and a certain amount of ZnAl2O4 catalyst (4% and 7%) for 2 and 3 hours of reaction. Catalytic Oxidation is also carried out without catalyst as a comparison. The vanillin product was confirmed by GC and spectral data achieved from UV-Vis, FTIR, and mass spectrometry. The results revealed that transforming eugenol to vanillin using ZnAl2O4 catalyst provides a better selectivity value than without using the catalyst, is 100% for the use of 4% catalyst in 2 hours, while without catalyst gives 88% in 3 hours. In addition, the use of 4% catalyst in 3 hours gives 94% for selectivity of vanillin, and the use of 7% catalyst gives selectivity values at 82% and 85%, respectively for 2 hours and 3 hours. The conversion rate of the use of catalyst and without catalyst gives the perfect rate at 100%, but the use of catalyst produces better vanillin with percent yield at 2.485 for 2 hours, and 3.22% for 3 hours, while without catalyst have percent yield of vanillin at 1.94% for 3 hours.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2021.010.03.622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, ZnAl2O4 catalyst was synthesized with the capability of transforming eugenol to vanillin through One-Pot Catalytic Oxidation. ZnAl2O4 was synthesized from Zn(CH3COO)2.2H2O and Al2O3 using the wet-impregnation method, and characterized by FTIR, XRD, and SEM. One-Pot Catalytic Oxidation was conducted by heating under reflux at 150oC using nitrobenzene and a certain amount of ZnAl2O4 catalyst (4% and 7%) for 2 and 3 hours of reaction. Catalytic Oxidation is also carried out without catalyst as a comparison. The vanillin product was confirmed by GC and spectral data achieved from UV-Vis, FTIR, and mass spectrometry. The results revealed that transforming eugenol to vanillin using ZnAl2O4 catalyst provides a better selectivity value than without using the catalyst, is 100% for the use of 4% catalyst in 2 hours, while without catalyst gives 88% in 3 hours. In addition, the use of 4% catalyst in 3 hours gives 94% for selectivity of vanillin, and the use of 7% catalyst gives selectivity values at 82% and 85%, respectively for 2 hours and 3 hours. The conversion rate of the use of catalyst and without catalyst gives the perfect rate at 100%, but the use of catalyst produces better vanillin with percent yield at 2.485 for 2 hours, and 3.22% for 3 hours, while without catalyst have percent yield of vanillin at 1.94% for 3 hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZnAl2O4催化一锅氧化将丁香酚转化为香兰素
本研究合成了具有一锅催化氧化将丁香酚转化为香兰素能力的ZnAl2O4催化剂。以Zn(CH3COO)2.2H2O和Al2O3为原料,采用湿浸渍法制备了ZnAl2O4,并用FTIR、XRD和SEM对其进行了表征。以硝基苯为原料,加入一定量的ZnAl2O4催化剂(4%和7%),在150℃回流加热下进行一锅催化氧化,反应时间分别为2和3小时。作为比较,催化氧化也在没有催化剂的情况下进行。通过气相色谱、紫外-可见光谱、红外光谱和质谱分析对产物进行了验证。结果表明,使用ZnAl2O4催化剂转化丁香酚为香兰素的选择性值比不使用ZnAl2O4催化剂有更好的选择性值,使用4%的催化剂2小时为100%,而不使用催化剂3小时为88%。此外,使用4%的催化剂,在3小时内,香兰素的选择性为94%,使用7%的催化剂,在2小时和3小时内,香兰素的选择性分别为82%和85%。使用催化剂和不使用催化剂的转化率均为100%,但使用催化剂的香兰素收率更好,2小时的收率为2.485,3小时的收率为3.22%,而不使用催化剂的香兰素收率为1.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of volatile compounds in several meat and bone broth using Solid Phase Micro Extraction-Gas Chromatography Mass Spectrometry (SPME-GCMS) for initial detection of Halal and Non-Halal Food Antidiabetic Activity of the Methanol Fraction of Sungkai Leaves (Peronema canescens Jack) Effects of Preparation Temperature and Liquid-Solid Lipid Composition to Curcumin-Nanostructured Lipid Carrier Characteristics Fabricated by Microfluidic Technique Effect of Avocado Seed Ethanol Extract (Persea americana Mill) on Superoxide Dismutase (SOD1) and Histological Expression of Pancreas in Rats (Rattus norvegicus) with Diabetes Mellitus Potential Cassava Peel Waste (Manihot esculenta Crantz) in The Production of Bioethanol by Enzymatic Hydrolysis and Fermentation Using Zymomonas mobilis Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1