Not All Operations Contribute Equally: Hierarchical Operation-adaptive Predictor for Neural Architecture Search

Ziye Chen, Yibing Zhan, Baosheng Yu, Mingming Gong, Bo Du
{"title":"Not All Operations Contribute Equally: Hierarchical Operation-adaptive Predictor for Neural Architecture Search","authors":"Ziye Chen, Yibing Zhan, Baosheng Yu, Mingming Gong, Bo Du","doi":"10.1109/ICCV48922.2021.01034","DOIUrl":null,"url":null,"abstract":"Graph-based predictors have recently shown promising results on neural architecture search (NAS). Despite their efficiency, current graph-based predictors treat all operations equally, resulting in biased topological knowledge of cell architectures. Intuitively, not all operations are equally significant during forwarding propagation when aggregating information from these operations to another operation. To address the above issue, we propose a Hierarchical Operation-adaptive Predictor (HOP) for NAS. HOP contains an operation-adaptive attention module (OAM) to capture the diverse knowledge between operations by learning the relative significance of operations in cell architectures during aggregation over iterations. In addition, a cell-hierarchical gated module (CGM) further refines and enriches the obtained topological knowledge of cell architectures, by integrating cell information from each iteration of OAM. The experimental results compared with state-of-the-art predictors demonstrate the capability of our proposed HOP.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"49 1","pages":"10488-10497"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Graph-based predictors have recently shown promising results on neural architecture search (NAS). Despite their efficiency, current graph-based predictors treat all operations equally, resulting in biased topological knowledge of cell architectures. Intuitively, not all operations are equally significant during forwarding propagation when aggregating information from these operations to another operation. To address the above issue, we propose a Hierarchical Operation-adaptive Predictor (HOP) for NAS. HOP contains an operation-adaptive attention module (OAM) to capture the diverse knowledge between operations by learning the relative significance of operations in cell architectures during aggregation over iterations. In addition, a cell-hierarchical gated module (CGM) further refines and enriches the obtained topological knowledge of cell architectures, by integrating cell information from each iteration of OAM. The experimental results compared with state-of-the-art predictors demonstrate the capability of our proposed HOP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并非所有操作贡献相同:神经结构搜索的分层操作自适应预测器
基于图的预测器最近在神经结构搜索(NAS)方面显示出了令人鼓舞的结果。尽管它们效率很高,但目前基于图的预测器对所有操作都一视同仁,导致对细胞架构的拓扑知识有偏差。直观地说,在转发传播过程中,当将信息从这些操作聚合到另一个操作时,并非所有操作都是同等重要的。为了解决上述问题,我们提出了用于NAS的分层操作自适应预测器(HOP)。HOP包含一个操作自适应注意模块(operation-adaptive attention module, OAM),通过在迭代聚合过程中学习单元架构中操作的相对重要性来捕获操作之间的不同知识。此外,细胞分层门控模块(CGM)通过整合每次迭代的细胞信息,进一步细化和丰富了所获得的细胞结构拓扑知识。实验结果与最先进的预测器进行了比较,证明了我们所提出的HOP的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1