Learning Binary Codes for High-Dimensional Data Using Bilinear Projections

Yunchao Gong, Sanjiv Kumar, H. Rowley, S. Lazebnik
{"title":"Learning Binary Codes for High-Dimensional Data Using Bilinear Projections","authors":"Yunchao Gong, Sanjiv Kumar, H. Rowley, S. Lazebnik","doi":"10.1109/CVPR.2013.69","DOIUrl":null,"url":null,"abstract":"Recent advances in visual recognition indicate that to achieve good retrieval and classification accuracy on large-scale datasets like Image Net, extremely high-dimensional visual descriptors, e.g., Fisher Vectors, are needed. We present a novel method for converting such descriptors to compact similarity-preserving binary codes that exploits their natural matrix structure to reduce their dimensionality using compact bilinear projections instead of a single large projection matrix. This method achieves comparable retrieval and classification accuracy to the original descriptors and to the state-of-the-art Product Quantization approach while having orders of magnitude faster code generation time and smaller memory footprint.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"36 1","pages":"484-491"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 185

Abstract

Recent advances in visual recognition indicate that to achieve good retrieval and classification accuracy on large-scale datasets like Image Net, extremely high-dimensional visual descriptors, e.g., Fisher Vectors, are needed. We present a novel method for converting such descriptors to compact similarity-preserving binary codes that exploits their natural matrix structure to reduce their dimensionality using compact bilinear projections instead of a single large projection matrix. This method achieves comparable retrieval and classification accuracy to the original descriptors and to the state-of-the-art Product Quantization approach while having orders of magnitude faster code generation time and smaller memory footprint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用双线性投影学习高维数据的二进制代码
视觉识别的最新进展表明,为了在像Image Net这样的大规模数据集上实现良好的检索和分类精度,需要非常高维的视觉描述符,例如Fisher Vectors。我们提出了一种新的方法,将这些描述符转换为紧致的保持相似的二进制码,利用它们的自然矩阵结构,使用紧致双线性投影而不是单个大投影矩阵来降低它们的维数。该方法实现了与原始描述符和最先进的产品量化方法相当的检索和分类精度,同时具有数量级更快的代码生成时间和更小的内存占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1