Manisha A. Kulkarni, R. Kryuchkov, A. Statculescu, C. Thickstun, A. Dibernardo, L. Lindsay, Benoit Talbot
{"title":"Ixodes scapularis tick distribution and infection rates in Ottawa, Ontario, 2017.","authors":"Manisha A. Kulkarni, R. Kryuchkov, A. Statculescu, C. Thickstun, A. Dibernardo, L. Lindsay, Benoit Talbot","doi":"10.14745/CCDR.V44I10A02","DOIUrl":null,"url":null,"abstract":"Background\nThe incidence of Lyme disease has increased in many regions of Canada in recent years, including in Ottawa, Ontario. To date there has been limited active tick surveillance in the region.\n\n\nObjectives\nTo estimate both the distribution and density of Ixodes scapularis ticks in the city of Ottawa, and the infection rates of ticks with Borrelia burgdorferi (that causes Lyme disease) and other tick-borne pathogens.\n\n\nMethods\nBetween June and October 2017, tick surveillance was conducted by drag sampling at 23 sites in Ottawa municipal parks, recreational trails and forests. Blacklegged ticks were tested for B. burgdorferi, Borrelia miyamotoi and Anaplasma phagocytophilum using quantitative polymerase chain reaction protocols.\n\n\nResults\nI. scapularis ticks were found in 16 of the 23 sites (70%). Recreational trails, conservation areas/forests and the provincial park within the city of Ottawa had significantly higher tick densities than municipal parks (p<0.01). Of the 194 adult and 26 nymphal I. scapularis tested, prevalence of infection was 29.5% for B. burgdorferi, 0.45% for B. miyamotoi and 0.91% for A. phagocytophilum.\n\n\nConclusion\nAlmost 30% of I. scapularis ticks tested in suburban and rural areas of the city of Ottawa were infected with B. burgdorferi, known to cause Lyme disease. Other types of infection, known to cause anaplasmosis and tick-borne relapsing fever, were also detected, although were very rare. Conducting active tick surveillance at the local level may help to inform risk assessment and public health actions.","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"1 1","pages":"237-242"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canada communicable disease report = Releve des maladies transmissibles au Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14745/CCDR.V44I10A02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Background
The incidence of Lyme disease has increased in many regions of Canada in recent years, including in Ottawa, Ontario. To date there has been limited active tick surveillance in the region.
Objectives
To estimate both the distribution and density of Ixodes scapularis ticks in the city of Ottawa, and the infection rates of ticks with Borrelia burgdorferi (that causes Lyme disease) and other tick-borne pathogens.
Methods
Between June and October 2017, tick surveillance was conducted by drag sampling at 23 sites in Ottawa municipal parks, recreational trails and forests. Blacklegged ticks were tested for B. burgdorferi, Borrelia miyamotoi and Anaplasma phagocytophilum using quantitative polymerase chain reaction protocols.
Results
I. scapularis ticks were found in 16 of the 23 sites (70%). Recreational trails, conservation areas/forests and the provincial park within the city of Ottawa had significantly higher tick densities than municipal parks (p<0.01). Of the 194 adult and 26 nymphal I. scapularis tested, prevalence of infection was 29.5% for B. burgdorferi, 0.45% for B. miyamotoi and 0.91% for A. phagocytophilum.
Conclusion
Almost 30% of I. scapularis ticks tested in suburban and rural areas of the city of Ottawa were infected with B. burgdorferi, known to cause Lyme disease. Other types of infection, known to cause anaplasmosis and tick-borne relapsing fever, were also detected, although were very rare. Conducting active tick surveillance at the local level may help to inform risk assessment and public health actions.