SODECL

Eleftherios Avramidis, Marta Lalik, O. Akman
{"title":"SODECL","authors":"Eleftherios Avramidis, Marta Lalik, O. Akman","doi":"10.1145/3385076","DOIUrl":null,"url":null,"abstract":"Stochastic differential equations (SDEs) are widely used to model systems affected by random processes. In general, the analysis of an SDE model requires numerical solutions to be generated many times over multiple parameter combinations. However, this process often requires considerable computational resources to be practicable. Due to the embarrassingly parallel nature of the task, devices such as multi-core processors and graphics processing units (GPUs) can be employed for acceleration. Here, we present SODECL (https://github.com/avramidis/sodecl), a software library that utilizes such devices to calculate multiple orbits of an SDE model. To evaluate the acceleration provided by SODECL, we compared the time required to calculate multiple orbits of an exemplar stochastic model when one CPU core is used, to the time required when using all CPU cores or a GPU. In addition, to assess scalability, we investigated how model size affected execution time on different parallel compute devices. Our results show that when using all 32 CPU cores of a high-end high-performance computing node, the task is accelerated by a factor of up to ≈6.7, compared to when using a single CPU core. Executing the task on a high-end GPU yielded accelerations of up to ≈4.5, compared to a single CPU core.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"11 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stochastic differential equations (SDEs) are widely used to model systems affected by random processes. In general, the analysis of an SDE model requires numerical solutions to be generated many times over multiple parameter combinations. However, this process often requires considerable computational resources to be practicable. Due to the embarrassingly parallel nature of the task, devices such as multi-core processors and graphics processing units (GPUs) can be employed for acceleration. Here, we present SODECL (https://github.com/avramidis/sodecl), a software library that utilizes such devices to calculate multiple orbits of an SDE model. To evaluate the acceleration provided by SODECL, we compared the time required to calculate multiple orbits of an exemplar stochastic model when one CPU core is used, to the time required when using all CPU cores or a GPU. In addition, to assess scalability, we investigated how model size affected execution time on different parallel compute devices. Our results show that when using all 32 CPU cores of a high-end high-performance computing node, the task is accelerated by a factor of up to ≈6.7, compared to when using a single CPU core. Executing the task on a high-end GPU yielded accelerations of up to ≈4.5, compared to a single CPU core.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机微分方程(SDEs)被广泛用于模拟受随机过程影响的系统。一般来说,SDE模型的分析需要在多个参数组合上多次生成数值解。然而,这个过程通常需要大量的计算资源才能实现。由于任务令人尴尬的并行特性,可以使用多核处理器和图形处理单元(gpu)等设备进行加速。在这里,我们提出了SODECL (https://github.com/avramidis/sodecl),一个利用这些设备计算SDE模型的多个轨道的软件库。为了评估SODECL提供的加速,我们比较了使用一个CPU内核时计算示例随机模型的多个轨道所需的时间,以及使用所有CPU内核或GPU时所需的时间。此外,为了评估可伸缩性,我们研究了模型大小如何影响不同并行计算设备上的执行时间。我们的研究结果表明,当使用高端高性能计算节点的所有32个CPU内核时,与使用单个CPU内核相比,任务的加速系数高达≈6.7。与单个CPU核心相比,在高端GPU上执行任务产生的加速度高达≈4.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1