New approaches to storing and manipulating multi-dimensional sparse arrays

E. Otoo, Hairong Wang, Gideon Nimako
{"title":"New approaches to storing and manipulating multi-dimensional sparse arrays","authors":"E. Otoo, Hairong Wang, Gideon Nimako","doi":"10.1145/2618243.2618281","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce some storage schemes for multi-dimensional sparse arrays (MDSAs) that handle the sparsity of the array with two primary goals; reducing the storage overhead and maintaining efficient data element access. Four schemes are proposed. These are: i.) The PATRICIA trie compressed storage method (PTCS) which uses PATRICIA trie to store the valid non-zero array elements; ii.)The extended compressed row storage (xCRS) which extends CRS method for sparse matrix storage to sparse arrays of higher dimensions and achieves the best data element access efficiency of all the methods; iii.) The bit encoded xCRS (BxCRS) which optimizes the storage utilization of xCRS by applying data compression methods with run length encoding, while maintaining its data access efficiency; and iv.) a hybrid approach that provides a desired balance between the storage utilization and data manipulation efficiency by combining xCRS and the Bit Encoded Sparse Storage (BESS). These storage schemes were evaluated and compared on three basic array operations; constructing the storage scheme, accessing a random element and retrieving a sub-array, using a set of synthetic sparse multi-dimensional arrays.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"48 1","pages":"41:1-41:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we introduce some storage schemes for multi-dimensional sparse arrays (MDSAs) that handle the sparsity of the array with two primary goals; reducing the storage overhead and maintaining efficient data element access. Four schemes are proposed. These are: i.) The PATRICIA trie compressed storage method (PTCS) which uses PATRICIA trie to store the valid non-zero array elements; ii.)The extended compressed row storage (xCRS) which extends CRS method for sparse matrix storage to sparse arrays of higher dimensions and achieves the best data element access efficiency of all the methods; iii.) The bit encoded xCRS (BxCRS) which optimizes the storage utilization of xCRS by applying data compression methods with run length encoding, while maintaining its data access efficiency; and iv.) a hybrid approach that provides a desired balance between the storage utilization and data manipulation efficiency by combining xCRS and the Bit Encoded Sparse Storage (BESS). These storage schemes were evaluated and compared on three basic array operations; constructing the storage scheme, accessing a random element and retrieving a sub-array, using a set of synthetic sparse multi-dimensional arrays.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存储和操作多维稀疏数组的新方法
在本文中,我们介绍了一些多维稀疏阵列(MDSAs)的存储方案,它们处理阵列的稀疏性有两个主要目标;减少存储开销并维护有效的数据元素访问。提出了四种方案。它们是:1)。PATRICIA trie压缩存储方法(PTCS)使用PATRICIA trie存储有效的非零数组元素;二)。扩展压缩行存储(xCRS)将CRS方法用于稀疏矩阵存储扩展到更高维度的稀疏数组,实现了所有方法中最佳的数据元素访问效率;iii)。采用bit编码的xCRS (BxCRS),在保持xCRS数据访问效率的同时,采用游程编码的数据压缩方法优化xCRS的存储利用率;iv.)一种混合方法,通过结合xCRS和比特编码稀疏存储(BESS),在存储利用率和数据操作效率之间提供理想的平衡。在三种基本数组操作上对这些存储方案进行了评价和比较;利用一组合成的稀疏多维数组构造存储方案,访问随机元素并检索子数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1