AmbiEar: mmWave Based Voice Recognition in NLoS Scenarios

J. Zhang, Yinian Zhou, Rui Xi, Shuai Li, Junchen Guo, Yuan He
{"title":"AmbiEar: mmWave Based Voice Recognition in NLoS Scenarios","authors":"J. Zhang, Yinian Zhou, Rui Xi, Shuai Li, Junchen Guo, Yuan He","doi":"10.1145/3550320","DOIUrl":null,"url":null,"abstract":"Millimeter wave (mmWave) based sensing is a significant technique that enables innovative smart applications, e.g., voice recognition. The existing works in this area require direct sensing of the human’s near-throat region and consequently have limited applicability in non-line-of-sight (NLoS) scenarios. This paper proposes AmbiEar, the first mmWave based voice recognition approach applicable in NLoS scenarios. AmbiEar is based on the insight that the human’s voice causes correlated vibrations of the surrounding objects, regardless of the human’s position and posture. Therefore, AmbiEar regards the surrounding objects as ears that can perceive sound and realizes indirect sensing of the human’s voice by sensing the vibration of the surrounding objects. By incorporating the designs like common component extraction, signal superimposition, and encoder-decoder network, AmbiEar tackles the challenges induced by low-SNR and distorted signals. We implement AmbiEar on a commercial mmWave radar and evaluate its performance under different settings. The experimental results show that AmbiEar has a word recognition accuracy of 87.21% in NLoS scenarios and reduces the recognition error by 35.1%, compared to the direct sensing approach.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Millimeter wave (mmWave) based sensing is a significant technique that enables innovative smart applications, e.g., voice recognition. The existing works in this area require direct sensing of the human’s near-throat region and consequently have limited applicability in non-line-of-sight (NLoS) scenarios. This paper proposes AmbiEar, the first mmWave based voice recognition approach applicable in NLoS scenarios. AmbiEar is based on the insight that the human’s voice causes correlated vibrations of the surrounding objects, regardless of the human’s position and posture. Therefore, AmbiEar regards the surrounding objects as ears that can perceive sound and realizes indirect sensing of the human’s voice by sensing the vibration of the surrounding objects. By incorporating the designs like common component extraction, signal superimposition, and encoder-decoder network, AmbiEar tackles the challenges induced by low-SNR and distorted signals. We implement AmbiEar on a commercial mmWave radar and evaluate its performance under different settings. The experimental results show that AmbiEar has a word recognition accuracy of 87.21% in NLoS scenarios and reduces the recognition error by 35.1%, compared to the direct sensing approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于毫米波的语音识别在NLoS场景
基于毫米波(mmWave)的传感是一项重要的技术,可以实现创新的智能应用,例如语音识别。该领域的现有工作需要直接感知人类的近喉区域,因此在非视线(NLoS)场景中的适用性有限。本文提出了AmbiEar,这是第一个基于毫米波的语音识别方法,适用于NLoS场景。不管人的位置和姿势如何,人的声音都会引起周围物体的相关振动。因此,AmbiEar将周围的物体视为可以感知声音的耳朵,通过感知周围物体的振动来实现对人的声音的间接感知。通过整合通用分量提取、信号叠加和编码器-解码器网络等设计,AmbiEar解决了低信噪比和失真信号带来的挑战。我们在商用毫米波雷达上实现了AmbiEar,并在不同设置下评估了其性能。实验结果表明,与直接感知方法相比,AmbiEar在非自然语言场景下的单词识别准确率达到87.21%,识别误差降低35.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Subject 3D Human Mesh Construction Using Commodity WiFi UHead: Driver Attention Monitoring System Using UWB Radar DeltaLCA: Comparative Life-Cycle Assessment for Electronics Design Multimodal Daily-Life Logging in Free-living Environment Using Non-Visual Egocentric Sensors on a Smartphone Lateralization Effects in Electrodermal Activity Data Collected Using Wearable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1