Detection of Valid Sentiment-Target Pairs in Online Product Reviews and News Media Articles

Svitlana Vakulenko, A. Weichselbraun, A. Scharl
{"title":"Detection of Valid Sentiment-Target Pairs in Online Product Reviews and News Media Articles","authors":"Svitlana Vakulenko, A. Weichselbraun, A. Scharl","doi":"10.1109/WI.2016.0024","DOIUrl":null,"url":null,"abstract":"This paper investigates the linking of sentiments to their respective targets, a sub-task of fine-grained sentiment analysis. Many different features have been proposed for this task, but often without a formal evaluation. We employ a recursive feature elimination approach to identify features that optimize predictive performance. Our experimental evaluation draws upon two corpora of product reviews and news articles annotated with sentiments and their targets. We introduce competitive baselines, outline the performance of the proposed approach, and report the most useful features for sentiment target linking. The results help to better understand how sentiment-target relations are expressed in the syntactic structure of natural language, and how this information can be used to build systems for fine-grained sentiment analysis.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"190 12 1","pages":"97-104"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the linking of sentiments to their respective targets, a sub-task of fine-grained sentiment analysis. Many different features have been proposed for this task, but often without a formal evaluation. We employ a recursive feature elimination approach to identify features that optimize predictive performance. Our experimental evaluation draws upon two corpora of product reviews and news articles annotated with sentiments and their targets. We introduce competitive baselines, outline the performance of the proposed approach, and report the most useful features for sentiment target linking. The results help to better understand how sentiment-target relations are expressed in the syntactic structure of natural language, and how this information can be used to build systems for fine-grained sentiment analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线产品评论和新闻媒体文章中有效情感-目标对的检测
本文研究了细粒度情感分析的子任务——情感与目标之间的关联。针对这项任务提出了许多不同的特性,但通常没有正式的评估。我们采用递归特征消除方法来识别优化预测性能的特征。我们的实验评估借鉴了两个语料库的产品评论和新闻文章注释的情绪和他们的目标。我们引入了竞争基线,概述了所提出方法的性能,并报告了情感目标链接中最有用的特征。这些结果有助于更好地理解情感-目标关系在自然语言的句法结构中是如何表达的,以及如何使用这些信息来构建细粒度情感分析系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Political Power of Twitter IEEE/WIC/ACM International Conference on Web Intelligence A Distributed Approach to Constructing Travel Solutions by Exploiting Web Resources Joint Model of Topics, Expertises, Activities and Trends for Question Answering Web Applications A Multi-context BDI Recommender System: From Theory to Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1