How to prove optimal convergence rates for adaptive least-squares finite element methods

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-04-05 DOI:10.1515/jnma-2021-0116
Philipp Bringmann
{"title":"How to prove optimal convergence rates for adaptive least-squares finite element methods","authors":"Philipp Bringmann","doi":"10.1515/jnma-2021-0116","DOIUrl":null,"url":null,"abstract":"Abstract The convergence analysis with rates for adaptive least-squares finite element methods (ALSFEMs) combines arguments from the a posteriori analysis of conforming and mixed finite element schemes. This paper provides an overview of the key arguments for the verification of the axioms of adaptivity for an ALSFEM for the solution of a linear model problem. The formulation at hand allows for the simultaneous analysis of first-order systems of the Poisson model problem, the Stokes equations, and the linear elasticity equations. Following [Carstensen and Park, SIAM J. Numer. Anal. 53(1), 2015], the adaptive algorithm is driven by an alternative residual-based error estimator with exact solve and includes a separate marking strategy for quasi-optimal data resolution of the right-hand side. This presentation covers conforming discretisations for an arbitrary polynomial degree and mixed homogeneous boundary conditions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0116","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The convergence analysis with rates for adaptive least-squares finite element methods (ALSFEMs) combines arguments from the a posteriori analysis of conforming and mixed finite element schemes. This paper provides an overview of the key arguments for the verification of the axioms of adaptivity for an ALSFEM for the solution of a linear model problem. The formulation at hand allows for the simultaneous analysis of first-order systems of the Poisson model problem, the Stokes equations, and the linear elasticity equations. Following [Carstensen and Park, SIAM J. Numer. Anal. 53(1), 2015], the adaptive algorithm is driven by an alternative residual-based error estimator with exact solve and includes a separate marking strategy for quasi-optimal data resolution of the right-hand side. This presentation covers conforming discretisations for an arbitrary polynomial degree and mixed homogeneous boundary conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何证明自适应最小二乘有限元方法的最优收敛率
摘要自适应最小二乘有限元法(alsems)的收敛率分析结合了符合和混合有限元格式的后验分析结果。本文综述了线性模型问题的非线性有限元法自适应公理验证的关键论点。手边的公式允许同时分析泊松模型问题、斯托克斯方程和线性弹性方程的一阶系统。继[Carstensen和Park, SIAM J. number]。[au:] [j] . 53(1), 2015],该自适应算法由具有精确解的可选残差误差估计器驱动,并包含用于右侧准最优数据分辨率的单独标记策略。本文讨论了任意多项式次和混合齐次边界条件下的一致性离散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1