Early Prediction of College Attrition Using Data Mining

L. C. B. Martins, Rommel N. Carvalho, Ricardo Silva Carvalho, M. Victorino, M. Holanda
{"title":"Early Prediction of College Attrition Using Data Mining","authors":"L. C. B. Martins, Rommel N. Carvalho, Ricardo Silva Carvalho, M. Victorino, M. Holanda","doi":"10.1109/ICMLA.2017.000-6","DOIUrl":null,"url":null,"abstract":"College attrition is a chronic problem for institutions of higher education. In Brazilian public universities, attrition also accounts for the significant waste of public resources desperately needed in other sectors of society. Thus, given the severity and persistence of this problem, several studies have been conducted in an attempt to mitigate undergraduate dropout rates. Using H2O software as a data mining tool, our study employed parameter tuning to train 321 of three classification algorithms, and with Deep Learning, it was possible to predict 71.1% of the cases of dropout given these characteristics. With this result, it will be possible to identify the attrition profiles of students and implement corrective measures on initiating their studies.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"43 1","pages":"1075-1078"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.000-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

College attrition is a chronic problem for institutions of higher education. In Brazilian public universities, attrition also accounts for the significant waste of public resources desperately needed in other sectors of society. Thus, given the severity and persistence of this problem, several studies have been conducted in an attempt to mitigate undergraduate dropout rates. Using H2O software as a data mining tool, our study employed parameter tuning to train 321 of three classification algorithms, and with Deep Learning, it was possible to predict 71.1% of the cases of dropout given these characteristics. With this result, it will be possible to identify the attrition profiles of students and implement corrective measures on initiating their studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘的高校人员流失早期预测
高校人员流失是高等教育机构面临的一个长期问题。在巴西的公立大学中,人员流失也造成了公共资源的大量浪费,而社会其他部门急需这些资源。因此,鉴于这个问题的严重性和持久性,已经进行了几项研究,试图降低大学生辍学率。使用H2O软件作为数据挖掘工具,我们的研究使用参数调优训练了三种分类算法中的321种,并且在给定这些特征的情况下,使用深度学习可以预测71.1%的辍学案例。有了这个结果,就有可能确定学生的流失概况,并在他们开始学习时实施纠正措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1