{"title":"Additivity violation of quantum channels via strong convergence to semi-circular and circular elements","authors":"M. Fukuda, Takahiro Hasebe, Shinya Sato","doi":"10.1142/s2010326322500125","DOIUrl":null,"url":null,"abstract":"Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.