Christiane Kothe, Anna Bodenko, Felix Nicklisch, Christian Louter
{"title":"Thin glass in façades: Adhesive joints for thin glass composite panels with 3D printed polymer cores","authors":"Christiane Kothe, Anna Bodenko, Felix Nicklisch, Christian Louter","doi":"10.1002/cend.202100010","DOIUrl":null,"url":null,"abstract":"<p>Thin glass is typically applied for displays on devices. In addition, it enables new applications in architecture, for example, in glass façades. Due to its high strength and small thickness (0.1-2 mm) thin glass is very flexible, lightweight and easily bendable. However, thin glass cannot simply replace conventional façade glazing. To avoid too high deformations of the glazing as a result of the high flexibility, it must be stiffened. An appropriate solution is the use of sandwich panels consisting of two thin glass panes with an inner polymer core. To achieve lightweight façade elements, 3D printed polymer structures are used instead of a solid core. The present study is dedicated to find a suitable adhesive to bond the polymer core to the thin glass. The mechanical and thermomechanical performances of different combinations of typical 3D printed polymers and transparent adhesives are evaluated. In addition, the influences of temperature and UV aging that occur in the area of the façades are investigated.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"3 1-2","pages":"35-42"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cend.202100010","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cend.202100010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Thin glass is typically applied for displays on devices. In addition, it enables new applications in architecture, for example, in glass façades. Due to its high strength and small thickness (0.1-2 mm) thin glass is very flexible, lightweight and easily bendable. However, thin glass cannot simply replace conventional façade glazing. To avoid too high deformations of the glazing as a result of the high flexibility, it must be stiffened. An appropriate solution is the use of sandwich panels consisting of two thin glass panes with an inner polymer core. To achieve lightweight façade elements, 3D printed polymer structures are used instead of a solid core. The present study is dedicated to find a suitable adhesive to bond the polymer core to the thin glass. The mechanical and thermomechanical performances of different combinations of typical 3D printed polymers and transparent adhesives are evaluated. In addition, the influences of temperature and UV aging that occur in the area of the façades are investigated.