Stock Market Trading Strategies Applying Risk and Decision Analysis Models for Detecting Financial Turbulence

M. Tirea, V. Negru
{"title":"Stock Market Trading Strategies Applying Risk and Decision Analysis Models for Detecting Financial Turbulence","authors":"M. Tirea, V. Negru","doi":"10.1109/SYNASC.2015.42","DOIUrl":null,"url":null,"abstract":"Risk handling and evaluation plays an importantrole in optimizing an investment portfolio. This paper's goal isto describe a system that determines, classifies and handles riskassociated to any type of investment based on sentiment analysis, price movement, information related to companies, certain characteristics, the traders confidence level, and by measuring thepotential loss over a certain period of time. This research impliesanalyzing trader's risk, market risk, risk associated to eachevaluated company or financial group, political and governmentalrisk. The system is able to create different types of portfoliooptions based on the investor/trader profile, which is build basedon the user's tolerance to risk (determined by the results froman interactive quiz that the user must complete when entering thesystem). We propose a multi-agent system that uses different typeof data(numerical, textual) in order to choose the appropriate mixof investments in order to minimize the risk and maximize thegain on a stock portfolio. In order to validate the result a systemwas constructed.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1970 1","pages":"216-223"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Risk handling and evaluation plays an importantrole in optimizing an investment portfolio. This paper's goal isto describe a system that determines, classifies and handles riskassociated to any type of investment based on sentiment analysis, price movement, information related to companies, certain characteristics, the traders confidence level, and by measuring thepotential loss over a certain period of time. This research impliesanalyzing trader's risk, market risk, risk associated to eachevaluated company or financial group, political and governmentalrisk. The system is able to create different types of portfoliooptions based on the investor/trader profile, which is build basedon the user's tolerance to risk (determined by the results froman interactive quiz that the user must complete when entering thesystem). We propose a multi-agent system that uses different typeof data(numerical, textual) in order to choose the appropriate mixof investments in order to minimize the risk and maximize thegain on a stock portfolio. In order to validate the result a systemwas constructed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运用风险和决策分析模型检测金融动荡的股票市场交易策略
风险处理与评估是优化投资组合的重要环节。本文的目标是描述一个系统,该系统根据情绪分析,价格变动,与公司相关的信息,某些特征,交易者信心水平,并通过测量一段时间内的潜在损失,来确定,分类和处理与任何类型的投资相关的风险。这项研究意味着分析交易者的风险,市场风险,与被评估公司或金融集团相关的风险,政治和政府风险。该系统能够根据投资者/交易者的配置文件创建不同类型的投资组合选项,该配置文件是基于用户对风险的容忍度(由用户进入系统时必须完成的交互式测试的结果决定)而构建的。我们提出了一个多智能体系统,它使用不同类型的数据(数字的,文本的)来选择适当的投资组合,以最小化风险和最大化股票投资组合的收益。为了验证结果,构建了一个系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Reasoning on Strongly Distributed Multi-agent Systems Extensions over OpenCL for Latency Reduction and Critical Applications An Improved Upper-Bound Algorithm for Non-preemptive Task Scheduling Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments Improving Malware Detection Response Time with Behavior-Based Statistical Analysis Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1