Classification of generic system dynamics model outputs via supervised time series pattern discovery

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Turkish Journal of Electrical Engineering and Computer Sciences Pub Date : 2019-04-01 DOI:10.3906/ELK-1711-394
Mert Edali, M. Baydogan, Gönenç Yücel
{"title":"Classification of generic system dynamics model outputs via supervised time series pattern discovery","authors":"Mert Edali, M. Baydogan, Gönenç Yücel","doi":"10.3906/ELK-1711-394","DOIUrl":null,"url":null,"abstract":"System dynamics (SD) is a simulation-based approach for analyzing feedback-rich systems. An ideal SD modeling cycle requires evaluating the qualitative pattern characteristics of a large set of time series model output for testing, validation, scenario analysis, and policy analysis purposes. This traditionally requires expert judgement, which limits the extent of experimentation due to time constraints. Although time series recognition approaches can help to automate such an evaluation, utilization of them has been limited to a hidden Markov model classifier, namely the Indirect Structure Testing Software (ISTS) algorithm. Despite being used within several automated model-analysis tools, ISTS has several shortcomings. In that respect, we propose an interpretable time series classification algorithm for the SD field, which also addresses the shortcomings of ISTS. Our approach, which can highlight the regions of a certain time series that are influential in the class assignment, is an extension of the symbolic multivariate time series approach with the use of a local importance measure. We compare the performance of the proposed approach against both ISTS and nearest-neighbor (NN) classifiers. Our experiments on a SD-specific application show that the proposed approach outperforms ISTS as well as conventional NN classifiers on both noisy and nonnoisy datasets. Additionally, its class assignments are interpretable as opposed to the other approaches considered in the experiments.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1711-394","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

System dynamics (SD) is a simulation-based approach for analyzing feedback-rich systems. An ideal SD modeling cycle requires evaluating the qualitative pattern characteristics of a large set of time series model output for testing, validation, scenario analysis, and policy analysis purposes. This traditionally requires expert judgement, which limits the extent of experimentation due to time constraints. Although time series recognition approaches can help to automate such an evaluation, utilization of them has been limited to a hidden Markov model classifier, namely the Indirect Structure Testing Software (ISTS) algorithm. Despite being used within several automated model-analysis tools, ISTS has several shortcomings. In that respect, we propose an interpretable time series classification algorithm for the SD field, which also addresses the shortcomings of ISTS. Our approach, which can highlight the regions of a certain time series that are influential in the class assignment, is an extension of the symbolic multivariate time series approach with the use of a local importance measure. We compare the performance of the proposed approach against both ISTS and nearest-neighbor (NN) classifiers. Our experiments on a SD-specific application show that the proposed approach outperforms ISTS as well as conventional NN classifiers on both noisy and nonnoisy datasets. Additionally, its class assignments are interpretable as opposed to the other approaches considered in the experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督时间序列模式发现的通用系统动力学模型输出分类
系统动力学(SD)是一种基于仿真的分析反馈丰富系统的方法。理想的SD建模周期需要评估大量时间序列模型输出的定性模式特征,以进行测试、验证、场景分析和策略分析。这通常需要专家判断,由于时间限制,这限制了实验的范围。虽然时间序列识别方法可以帮助自动化这样的评估,但它们的使用仅限于隐马尔可夫模型分类器,即间接结构测试软件(ISTS)算法。尽管在一些自动化模型分析工具中使用,但ISTS有几个缺点。在这方面,我们提出了一种可解释的SD领域时间序列分类算法,该算法也解决了ist的缺点。我们的方法可以突出显示某个时间序列中对班级分配有影响的区域,是使用局部重要性度量的符号多元时间序列方法的扩展。我们比较了所提出的方法与ISTS和最近邻(NN)分类器的性能。我们在sd特定应用程序上的实验表明,所提出的方法在噪声和非噪声数据集上都优于ISTS和传统的神经网络分类器。此外,与实验中考虑的其他方法相反,它的课堂作业是可解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Turkish Journal of Electrical Engineering and Computer Sciences
Turkish Journal of Electrical Engineering and Computer Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.90
自引率
9.10%
发文量
95
审稿时长
6.9 months
期刊介绍: The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence. Contribution is open to researchers of all nationalities.
期刊最新文献
A comparative study of YOLO models and a transformer-based YOLOv5 model for mass detection in mammograms Feature selection optimization with filtering and wrapper methods: two disease classification cases New modified carrier-based level-shifted PWM control for NPC rectifiers considered for implementation in EV fast chargers FuzzyCSampling: A Hybrid fuzzy c-means clustering sampling strategy for imbalanced datasets A practical low-dimensional feature vector generation method based on wavelet transform for psychophysiological signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1