Seismic Behaviour of Beris Dam Under Six Earthquake Excitations by using Finite Element Method

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-04-15 DOI:10.24191/jmeche.v20i2.22051
R. Ismail
{"title":"Seismic Behaviour of Beris Dam Under Six Earthquake Excitations by using Finite Element Method","authors":"R. Ismail","doi":"10.24191/jmeche.v20i2.22051","DOIUrl":null,"url":null,"abstract":"This paper focused on the behavior of the dam when exposed to seismic loading and ability of the dam to withstand the applied loads from various seismic events. The chosen concrete dam to be referred to in the two- dimensional analysis is Beris Dam located in Kedah, Malaysia. A nonlinear dynamic analysis is chosen to analyse the behavior of Beris Dam under selected ground motion. Analysis of the dam is performed using the finite element method by utilizing ABAQUS software. From the cracking analysis pattern, a crack appeared at the upstream face of the dam caused mainly by the excessive tensile stress. Based on the results, the displacement of the dam is increased with the increasing of ground motion data where the displacement occurred in the horizontal direction. The maximum stresses exerted by the dam structure do not exceed the allowable capacity of concrete dams. The stress behaviour of the dam was satisfactorily acceptable as the maximum normal stress and shear stress of the dam when numerous seismic loadings are applied do not exceed the allowable stress capacity which is 800 kN/m2.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focused on the behavior of the dam when exposed to seismic loading and ability of the dam to withstand the applied loads from various seismic events. The chosen concrete dam to be referred to in the two- dimensional analysis is Beris Dam located in Kedah, Malaysia. A nonlinear dynamic analysis is chosen to analyse the behavior of Beris Dam under selected ground motion. Analysis of the dam is performed using the finite element method by utilizing ABAQUS software. From the cracking analysis pattern, a crack appeared at the upstream face of the dam caused mainly by the excessive tensile stress. Based on the results, the displacement of the dam is increased with the increasing of ground motion data where the displacement occurred in the horizontal direction. The maximum stresses exerted by the dam structure do not exceed the allowable capacity of concrete dams. The stress behaviour of the dam was satisfactorily acceptable as the maximum normal stress and shear stress of the dam when numerous seismic loadings are applied do not exceed the allowable stress capacity which is 800 kN/m2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝里斯大坝在六次地震作用下的抗震性能有限元分析
本文重点研究了大坝在地震荷载作用下的性能,以及大坝承受各种地震事件荷载的能力。在二维分析中选取的混凝土坝是位于马来西亚吉打州的Beris大坝。采用非线性动力分析方法分析了Beris坝在选定地震动作用下的受力特性。利用ABAQUS软件对坝体进行有限元分析。从裂缝分析模式看,坝体上游面出现裂缝,主要是由于拉应力过大造成的。结果表明,在水平方向发生位移的地方,坝体位移随地震动数据的增加而增大。坝体结构施加的最大应力不超过混凝土坝的允许承载力。在多次地震荷载作用下,大坝的最大法向应力和剪应力不超过800千牛/平方米的许用应力能力,大坝的应力行为令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software Active suspension for all-terrain vehicle with intelligent control using artificial neural networks The influence of helmet certification in motorcycle helmets protective performance Sustainable considerations in additive manufacturing processes: A review Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1