{"title":"Crystal Structure: Reciprocal Space Methods for Carry out the Structure Solution from Powder Data","authors":"M. Mouha, D. Tlamsamani, K. Yamni","doi":"10.11648/J.IJMSA.20211002.11","DOIUrl":null,"url":null,"abstract":"It is a relatively easy task to the solution of the so-called phase problem in crystallography, by applying ab initio phasing methods for the efficiency of structure solution from single-crystal data. Their effective application to powder x-ray diffraction data is still a real challenge unless the size of the structure is moderate. The percentage of principal success hinges on a number of factors; included are the quality of the experimental pattern, the success of the pattern-decomposition programs, the quality of the extracted structure-factor from the experimental pattern via the Le Bail or Pawley methods, the normalization of structure-factor process, the experimental resolution and the straightforward of the phasing process. This paper aims at providing an overall overview of the reciprocal space RS methods (ab initio phasing methods of crystal structure) as well as the direct methods, Patterson function and maximum entropy methods. This paper will also describe the factors affecting phasing by reciprocal space methods and the limitation of reciprocal space methods. Those are available for carry out the structure solution, in order to provide a clear theoretical account, experimental practice and computing approaches regarding and describe an outline of the solution process of phase problem by powder X-ray diffraction, leads to the best structure solution using practical examples.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20211002.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is a relatively easy task to the solution of the so-called phase problem in crystallography, by applying ab initio phasing methods for the efficiency of structure solution from single-crystal data. Their effective application to powder x-ray diffraction data is still a real challenge unless the size of the structure is moderate. The percentage of principal success hinges on a number of factors; included are the quality of the experimental pattern, the success of the pattern-decomposition programs, the quality of the extracted structure-factor from the experimental pattern via the Le Bail or Pawley methods, the normalization of structure-factor process, the experimental resolution and the straightforward of the phasing process. This paper aims at providing an overall overview of the reciprocal space RS methods (ab initio phasing methods of crystal structure) as well as the direct methods, Patterson function and maximum entropy methods. This paper will also describe the factors affecting phasing by reciprocal space methods and the limitation of reciprocal space methods. Those are available for carry out the structure solution, in order to provide a clear theoretical account, experimental practice and computing approaches regarding and describe an outline of the solution process of phase problem by powder X-ray diffraction, leads to the best structure solution using practical examples.