Firew Elias, S. Muddada, Diriba Muleta, Belachew Tefera
{"title":"Improved Antibiotic Activity from Streptomyces monomycini strain RVE129 Using Classical and Statistical Design of Experiments","authors":"Firew Elias, S. Muddada, Diriba Muleta, Belachew Tefera","doi":"10.13005/bpj/2679","DOIUrl":null,"url":null,"abstract":"Many bioactive secondary metabolites with intriguing antibacterial, antiviral, and anticancer properties have been produced by Streptomyces species. The objective of this work is to use conventional and statistical techniques to improve the antibiotic production medium of Streptomyces monomycini RVE129, which was isolated from rhizospheric soil in Hawassa, Ethiopia. The main media components were chosen using the one factor at a time method and the Plackett-Burman design, which was then, further, optimized using the Box-Behnken Design for increased antibiotic production. On ISP4 medium (10 g/L starch, 1 g/L NaCl, 1 g/L MgSO4.7H2O, 2 g/L (NH4) 2SO4, 2 g/L CaCO3and 1 g/L K2HPO4, 0.1 g/L FeSO4·7H2O, 0.1 g/L MnCl2·4H2O, 0.1 g/L ZnSO4·7H2O), S. monomycini RVE129 produced the greatest amount of antibiotics. Starch and soybean meal were found to be the best sources of carbon and nitrogen for the strainRVE129. During the eighth day of incubation under shaking conditions, the best conditions for antibiotic synthesis were determined at a temperature of 30°C and a pH of 7.5. Plackett-Burman design identified K2HPO4, starch, and soybean meal as having the highest influence on antibiotic synthesis with a confidence level above 95%. The yield of producing antibiotics increased by 24.30% when the concentration of critical variables was further improved by using the Box-Behnken Design of the Response Surface approach. The optimum concentration was 20 g/L starch, 7.5 g/L s oybean meal, and 1.25 g/L K2HPO4. To the best of our knowledge, this is the first investigation into medium optimization for the production of the antibiotic from S. monomycini RVE129.","PeriodicalId":9054,"journal":{"name":"Biomedical and Pharmacology Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Pharmacology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bpj/2679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Many bioactive secondary metabolites with intriguing antibacterial, antiviral, and anticancer properties have been produced by Streptomyces species. The objective of this work is to use conventional and statistical techniques to improve the antibiotic production medium of Streptomyces monomycini RVE129, which was isolated from rhizospheric soil in Hawassa, Ethiopia. The main media components were chosen using the one factor at a time method and the Plackett-Burman design, which was then, further, optimized using the Box-Behnken Design for increased antibiotic production. On ISP4 medium (10 g/L starch, 1 g/L NaCl, 1 g/L MgSO4.7H2O, 2 g/L (NH4) 2SO4, 2 g/L CaCO3and 1 g/L K2HPO4, 0.1 g/L FeSO4·7H2O, 0.1 g/L MnCl2·4H2O, 0.1 g/L ZnSO4·7H2O), S. monomycini RVE129 produced the greatest amount of antibiotics. Starch and soybean meal were found to be the best sources of carbon and nitrogen for the strainRVE129. During the eighth day of incubation under shaking conditions, the best conditions for antibiotic synthesis were determined at a temperature of 30°C and a pH of 7.5. Plackett-Burman design identified K2HPO4, starch, and soybean meal as having the highest influence on antibiotic synthesis with a confidence level above 95%. The yield of producing antibiotics increased by 24.30% when the concentration of critical variables was further improved by using the Box-Behnken Design of the Response Surface approach. The optimum concentration was 20 g/L starch, 7.5 g/L s oybean meal, and 1.25 g/L K2HPO4. To the best of our knowledge, this is the first investigation into medium optimization for the production of the antibiotic from S. monomycini RVE129.
期刊介绍:
Biomedical and Pharmacology Journal (BPJ) is an International Peer Reviewed Research Journal in English language whose frequency is quarterly. The journal seeks to promote research, exchange of scientific information, consideration of regulatory mechanisms that affect drug development and utilization, and medical education. BPJ take much care in making your article published without much delay with your kind cooperation and support. Research papers, review articles, short communications, news are welcomed provided they demonstrate new findings of relevance to the field as a whole. All articles will be peer-reviewed and will find a place in Biomedical and Pharmacology Journal based on the merit and innovativeness of the research work. BPJ hopes that Researchers, Research scholars, Academician, Industrialists etc. would make use of this journal for the development of science and technology. Topics of interest include, but are not limited to: Biochemistry Genetics Microbiology and virology Molecular, cellular and cancer biology Neurosciences Pharmacology Drug Discovery Cardiovascular Pharmacology Neuropharmacology Molecular & Cellular Mechanisms Immunology & Inflammation Pharmacy.