THE USE OF CONTRASTS IN MULTIVARIATE NONLINEAR MIXED MODELS TO COMPARE TREATMENTS IN LONGITUDINAL FACTORIAL EXPERIMENTS

L. Carvalho, M. Mischan, J. R. S. Passos, S. Z. D. Pinho
{"title":"THE USE OF CONTRASTS IN MULTIVARIATE NONLINEAR MIXED MODELS TO COMPARE TREATMENTS IN LONGITUDINAL FACTORIAL EXPERIMENTS","authors":"L. Carvalho, M. Mischan, J. R. S. Passos, S. Z. D. Pinho","doi":"10.28951/RBB.V36I4.314","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to establish contrasts in multivariate nonlinear mixed models to verify the effects of treatments in experiments with longitudinal data and multiple responses. The evaluated nonlinear functions were the three parameters curves logistic, Gompertz and von Bertalanffy. The random variables were added to the fixed parameters, asymptote α , abscissa of the inflection point  β, and parameter γ. The best fitted model was expanded with covariates, which establish orthogonal contrasts, in order to verify main effects and interactions in factorial experiments. The methodology was applied to analyse data of an experiment with citrus, in which case the logistic bivariate mixed effects model was the best fit. The chosen model allowed comparisons between treatments in a global context of more than one dependent variable and throughout the measurement period. ","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V36I4.314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to establish contrasts in multivariate nonlinear mixed models to verify the effects of treatments in experiments with longitudinal data and multiple responses. The evaluated nonlinear functions were the three parameters curves logistic, Gompertz and von Bertalanffy. The random variables were added to the fixed parameters, asymptote α , abscissa of the inflection point  β, and parameter γ. The best fitted model was expanded with covariates, which establish orthogonal contrasts, in order to verify main effects and interactions in factorial experiments. The methodology was applied to analyse data of an experiment with citrus, in which case the logistic bivariate mixed effects model was the best fit. The chosen model allowed comparisons between treatments in a global context of more than one dependent variable and throughout the measurement period. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多变量非线性混合模型中使用对比来比较纵向因子实验中的处理
本研究的目的是建立多元非线性混合模型的对比,在纵向数据和多响应的实验中验证处理的效果。评估的非线性函数为logistic、Gompertz和von Bertalanffy三参数曲线。将随机变量加入固定参数、渐近线α、拐点横坐标β和参数γ中。用协变量对拟合最佳的模型进行扩展,建立正交对比,以验证析因实验中的主效应和相互作用。将该方法应用于柑橘试验数据分析,logistic双变量混合效应模型最适合。所选择的模型允许在多个因变量的全球背景下和整个测量期间对治疗进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1