Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers

IF 2.4 Q2 ENGINEERING, MECHANICAL Nonlinear Engineering - Modeling and Application Pub Date : 2022-01-01 DOI:10.1515/nleng-2022-0010
N. Ullah, Muhammad Imran Asjad, Hamood UR REHMAN, A. Akgül
{"title":"Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers","authors":"N. Ullah, Muhammad Imran Asjad, Hamood UR REHMAN, A. Akgül","doi":"10.1515/nleng-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are attracted to discover the multiple-optical soiltons in birefringent fibers for Radhakrishnan–Kundu–Lakshmanan equation (RKLE) by applying the Sardar-subequation method (SSM) and the new extended hyperbolic function method (EHFM). We construct the solutions in the form of exponential, trigonometric, and hyperbolic functions solitons solutions like mixed complex solitons and multiple-optical solitons solutions. In addition, singular periodic wave solutions are constructed, and the restraint conditions for the presence of soliton solutions are also defined. Moreover, the physical interpretation of the obtained solutions is disclosed in forms of 3D and 2D plots for different suitable parameters. The attained results indicate that the implemented computational scheme is straight, proficient, and brief and can be applied in more complex phenomena with the associate of representative computations. We have obtained several sorts of new solutions.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 21

Abstract

Abstract In this article, we are attracted to discover the multiple-optical soiltons in birefringent fibers for Radhakrishnan–Kundu–Lakshmanan equation (RKLE) by applying the Sardar-subequation method (SSM) and the new extended hyperbolic function method (EHFM). We construct the solutions in the form of exponential, trigonometric, and hyperbolic functions solitons solutions like mixed complex solitons and multiple-optical solitons solutions. In addition, singular periodic wave solutions are constructed, and the restraint conditions for the presence of soliton solutions are also defined. Moreover, the physical interpretation of the obtained solutions is disclosed in forms of 3D and 2D plots for different suitable parameters. The attained results indicate that the implemented computational scheme is straight, proficient, and brief and can be applied in more complex phenomena with the associate of representative computations. We have obtained several sorts of new solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双折射光纤中Radhakrishnan-Kundu-Lakshmanan方程光孤子的构造
本文应用Sardar-subequation方法(SSM)和新的扩展双曲函数方法(EHFM)发现了Radhakrishnan-Kundu-Lakshmanan方程(RKLE)的双折射光纤中的多光土。我们以指数函数、三角函数和双曲函数的形式构造解,如混合复孤子和多光学孤子解。此外,构造了奇异周期波解,并定义了孤子解存在的约束条件。此外,对于不同的合适参数,以3D和2D图的形式公开了所获得解的物理解释。计算结果表明,所实现的计算方案简单、熟练、简洁,可以应用于更复杂的现象,并伴有代表性的计算。我们得到了几种新的解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Study of time-fractional delayed differential equations via new integral transform-based variation iteration technique Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning Nonlinear adaptive sliding mode control with application to quadcopters Equilibrium stability of dynamic duopoly Cournot game under heterogeneous strategies, asymmetric information, and one-way R&D spillovers A versatile dynamic noise control framework based on computer simulation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1