A. Ghannam, D. Bourrier, L. Ourak, C. Viallon, T. Parra
{"title":"Low cost 3D multilevel interconnect integration for RF and microwave applications","authors":"A. Ghannam, D. Bourrier, L. Ourak, C. Viallon, T. Parra","doi":"10.1109/ECTC.2012.6249010","DOIUrl":null,"url":null,"abstract":"This work presents a new and low cost multi-level 3D copper interconnect process for RF and microwave applications. This process extends 3D interconnect integration technologies from silicon to above-IC polymer. Therefore, 3D passive devices and multi-level interconnects can be integrated using a single electroplating step making the process suitable for 3D-MMIC integration. 3D interconnects are realized by patterning the SU-8 to specific locations to create the desired 3D shape. A 3D seed layer is deposited above the SU-8 and the substrate to insure 3D electroplating current flow. The BPN is used as a thick mold for copper electroplating with an aspect ratio as high as 16:1. An optimized electroplating process is later used to grow copper in a 3D technique, insuring transition between all metallic layers. Finally, high-Q (60 @ 6 GHz) power inductors have been designed and integrated above a 50 W RF power LDMOS device, using this process.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"17 1","pages":"1351-1355"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6249010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents a new and low cost multi-level 3D copper interconnect process for RF and microwave applications. This process extends 3D interconnect integration technologies from silicon to above-IC polymer. Therefore, 3D passive devices and multi-level interconnects can be integrated using a single electroplating step making the process suitable for 3D-MMIC integration. 3D interconnects are realized by patterning the SU-8 to specific locations to create the desired 3D shape. A 3D seed layer is deposited above the SU-8 and the substrate to insure 3D electroplating current flow. The BPN is used as a thick mold for copper electroplating with an aspect ratio as high as 16:1. An optimized electroplating process is later used to grow copper in a 3D technique, insuring transition between all metallic layers. Finally, high-Q (60 @ 6 GHz) power inductors have been designed and integrated above a 50 W RF power LDMOS device, using this process.