Recent Advances in Clock Synchronization for Packet-Switched Networks

Anantha K. Karthik, Rick S. Blum
{"title":"Recent Advances in Clock Synchronization for Packet-Switched Networks","authors":"Anantha K. Karthik, Rick S. Blum","doi":"10.1561/2000000108","DOIUrl":null,"url":null,"abstract":"Speech enhancement is a core problem in audio signal processing with commercial applications in devices as diverse as mobile phones, conference call systems, smart assistants, and hearing aids. An essential component in the design of speech enhancement algorithms is acoustic source localization. Speaker localization is also directly applicable to many other audio related tasks, e.g., automated camera steering, teleconferencing systems, and robot audition. From a signal processing perspective, speaker localization is the task of mapping multichannel speech signals to 3-D source coordinates. To obtain viable solutions for this mapping, an accurate description of the source wave propagation captured by the respective acoustic channel is required. In fact, the acoustic channels can be considered as the spatial fingerprints characterizing the positions of each of the sources in a reverberant enclosure. These fingerprints represent complex reflection patterns stemming from the surfaces and objects characterizing the enclosure. Hence, they are Bracha Laufer-Goldshtein, Ronen Talmon and Sharon Gannot (2020), “Data-Driven Multi-Microphone Speaker Localization on Manifolds”, Foundations and Trends © in Signal Processing: Vol. 14, No. 1–2, pp 1–161. DOI: 10.1561/2000000098. Full text available at: http://dx.doi.org/10.1561/2000000098","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"5 1","pages":"360-443"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Speech enhancement is a core problem in audio signal processing with commercial applications in devices as diverse as mobile phones, conference call systems, smart assistants, and hearing aids. An essential component in the design of speech enhancement algorithms is acoustic source localization. Speaker localization is also directly applicable to many other audio related tasks, e.g., automated camera steering, teleconferencing systems, and robot audition. From a signal processing perspective, speaker localization is the task of mapping multichannel speech signals to 3-D source coordinates. To obtain viable solutions for this mapping, an accurate description of the source wave propagation captured by the respective acoustic channel is required. In fact, the acoustic channels can be considered as the spatial fingerprints characterizing the positions of each of the sources in a reverberant enclosure. These fingerprints represent complex reflection patterns stemming from the surfaces and objects characterizing the enclosure. Hence, they are Bracha Laufer-Goldshtein, Ronen Talmon and Sharon Gannot (2020), “Data-Driven Multi-Microphone Speaker Localization on Manifolds”, Foundations and Trends © in Signal Processing: Vol. 14, No. 1–2, pp 1–161. DOI: 10.1561/2000000098. Full text available at: http://dx.doi.org/10.1561/2000000098
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分组交换网络时钟同步研究进展
语音增强是音频信号处理的核心问题,在移动电话、电话会议系统、智能助手和助听器等各种设备中都有商业应用。声源定位是语音增强算法设计中的一个重要组成部分。扬声器定位也直接适用于许多其他音频相关的任务,例如,自动摄像机转向,电话会议系统和机器人试听。从信号处理的角度来看,说话人定位是将多通道语音信号映射到三维源坐标的任务。为了获得这种映射的可行解决方案,需要对各自声学通道捕获的源波传播进行准确描述。实际上,声通道可以被认为是空间指纹,表征了混响罩中每个声源的位置。这些指纹代表了复杂的反射模式,这些反射模式来自于外壳的表面和物体。因此,他们是Bracha Laufer-Goldshtein, Ronen Talmon和Sharon Gannot(2020),“数据驱动的多麦克风扬声器在流形上的定位”,信号处理的基础和趋势©:第14卷,第1-2期,第1-161页。DOI: 10.1561 / 2000000098。全文可在:http://dx.doi.org/10.1561/2000000098
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1