The Medicago truncatula Vacuolar iron Transporter‐Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process

The New phytologist Pub Date : 2019-07-02 DOI:10.1101/689224
Jennifer H. Walton, Gyöngyi Kontra-Kováts, R. Green, Á. Domonkos, B. Horváth, Ella M. Brear, M. Franceschetti, P. Kaló, J. Balk
{"title":"The Medicago truncatula Vacuolar iron Transporter‐Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process","authors":"Jennifer H. Walton, Gyöngyi Kontra-Kováts, R. Green, Á. Domonkos, B. Horváth, Ella M. Brear, M. Franceschetti, P. Kaló, J. Balk","doi":"10.1101/689224","DOIUrl":null,"url":null,"abstract":"The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron. The host plant is known to provide iron to developing bacteroids, but questions remain regarding which transporters are involved. Here, we characterize two Vacuolar Iron Transporter-Like (VTL) proteins in Medicago truncatula that are specifically expressed during nodule development. VTL4 is mostly expressed during early infection and the protein was localized to membranes and the infection thread. vtl4 mutants were delayed in nodule development. VTL8 is closely related to SEN1 in Lotus japonicus and expressed in the late stages of bacteroid differentiation. The VTL8 protein was localized to the symbiosome membrane. A mutant line lacking the tandemly-arranged VTL4 – VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a slight decrease in luminescence was observed in vtl4 mutants and a strong decrease in the 13U mutant. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. Taken together, these data indicate that VTL-type transporters are the main route for delivering iron to symbiotic rhizobia.","PeriodicalId":23025,"journal":{"name":"The New phytologist","volume":"14 1","pages":"651 - 666"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New phytologist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/689224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron. The host plant is known to provide iron to developing bacteroids, but questions remain regarding which transporters are involved. Here, we characterize two Vacuolar Iron Transporter-Like (VTL) proteins in Medicago truncatula that are specifically expressed during nodule development. VTL4 is mostly expressed during early infection and the protein was localized to membranes and the infection thread. vtl4 mutants were delayed in nodule development. VTL8 is closely related to SEN1 in Lotus japonicus and expressed in the late stages of bacteroid differentiation. The VTL8 protein was localized to the symbiosome membrane. A mutant line lacking the tandemly-arranged VTL4 – VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a slight decrease in luminescence was observed in vtl4 mutants and a strong decrease in the 13U mutant. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. Taken together, these data indicate that VTL-type transporters are the main route for delivering iron to symbiotic rhizobia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
苜蓿空泡铁转运蛋白VTL4和VTL8在感染过程的不同阶段向共生细菌输送铁
豆科植物根瘤中根瘤菌与根瘤菌的共生关系对铁的需求量很大。众所周知,寄主植物为发育中的类细菌提供铁,但关于哪些转运蛋白参与其中的问题仍然存在。在这里,我们描述了两种空泡铁转运蛋白样(VTL)蛋白,它们在根瘤发育过程中特异性表达。VTL4主要在感染早期表达,蛋白定位于膜和感染线。Vtl4突变体在结节发育中延迟。VTL8与莲子SEN1密切相关,表达于类细菌分化后期。VTL8蛋白定位在共生体膜上。缺乏串联排列的VTL4 - VTL8基因的突变系13U无法形成功能性结节,无法固定氮,仅通过表达VTL8即可恢复。使用新开发的lux报告器监测类细菌的铁状态,观察到vtl4突变体的发光轻微下降,而13U突变体的发光明显下降。通过酵母的补充,证明了VTL4和VTL8的铁转运能力。综上所述,这些数据表明,vtl型转运体是向共生根瘤菌输送铁的主要途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sucrose rather than GA transported by AtSWEET13 and AtSWEET14 supports pollen fitness at late anther development stages Revisiting Ancient Polyploidy in Leptosporangiate Ferns Teasing apart the joint effect of demography and natural selection in the birth of a contact zone Arbuscular mycorrhizal fungi influence host infection during epidemics in a wild plant pathosystem Tomato CRABS CLAW paralogues interact with chromatin remodelling factors to mediate carpel development and floral determinacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1