Separation of negatively charged isomeric quinones in acidic solution by capillary electrophoresis with reductive electrochemical detection

Amy Smith, J. R. Kirchhoff, R. A. Hudson, L. Tillekeratne
{"title":"Separation of negatively charged isomeric quinones in acidic solution by capillary electrophoresis with reductive electrochemical detection","authors":"Amy Smith, J. R. Kirchhoff, R. A. Hudson, L. Tillekeratne","doi":"10.1039/A906790F","DOIUrl":null,"url":null,"abstract":"A capillary electrophoresis method with reductive electrochemical detection was developed for the separation of the novel enzyme cofactor pyrroloquinoline quinone (PQQ) and three isomeric analogues. Tuning the reduction potential of the o-quinone moiety to a value more positive than the reduction potential for oxygen was accomplished by adjusting the capillary buffer to pH 2, thus eliminating the need for deoxygenation. To counter the suppression of the electroosmotic flow (EOF) at pH 2, a negative separation voltage of –22.5 V was applied to a 25 µm id capillary resulting in migration of the anionic isomers toward the electrochemical detector. Fast and efficient separation was achieved in 0.15 mM phosphate buffer at pH 2. A mass detection limit for PQQ of 2 fmol was obtained with end-column detection. This approach may find utility for the separation and sensitive detection of a wide range of reducible quinones.","PeriodicalId":7814,"journal":{"name":"Analytical Communications","volume":"69 1","pages":"371-374"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A906790F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A capillary electrophoresis method with reductive electrochemical detection was developed for the separation of the novel enzyme cofactor pyrroloquinoline quinone (PQQ) and three isomeric analogues. Tuning the reduction potential of the o-quinone moiety to a value more positive than the reduction potential for oxygen was accomplished by adjusting the capillary buffer to pH 2, thus eliminating the need for deoxygenation. To counter the suppression of the electroosmotic flow (EOF) at pH 2, a negative separation voltage of –22.5 V was applied to a 25 µm id capillary resulting in migration of the anionic isomers toward the electrochemical detector. Fast and efficient separation was achieved in 0.15 mM phosphate buffer at pH 2. A mass detection limit for PQQ of 2 fmol was obtained with end-column detection. This approach may find utility for the separation and sensitive detection of a wide range of reducible quinones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毛细管电泳-还原电化学分离酸性溶液中带负电荷的醌异构体
建立了毛细管电泳还原电化学检测分离新型酶辅因子吡咯喹啉醌(PQQ)及其三种异构体类似物的方法。通过调节毛细管缓冲液的pH值为2,将邻醌部分的还原电位调整到比氧还原电位更正的值,从而消除了脱氧的需要。为了抵消pH 2对电渗透流动(EOF)的抑制,在25µm的毛细管上施加-22.5 V的负分离电压,导致阴离子异构体向电化学检测器迁移。在pH为2的0.15 mM磷酸盐缓冲液中实现了快速高效的分离。采用柱端检测,PQQ的质量检出限为2 fmol。该方法可用于多种可还原醌类化合物的分离和灵敏检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A water-soluble tetrazolium salt useful for colorimetric cell viability assay Determination of α,4-dihydroxy-3-methoxybenzeneacetic acid (vanilmandelic acid) by flow injection analysis coupled with luminol–hexacyanoferrate(III) chemiluminescence detection Electrochemical detection of aluminium using single-use sensors Recent developments in the analysis of light isotopes by continuous flow isotope ratio mass spectrometry FTIR spectroscopy as detection principle in aqueous flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1