Change in the Structure of Asphaltene Macromolecules of the Krapivinskoye Oil Field During Biological Oxidation

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Journal of Siberian Federal University. Chemistry Pub Date : 2021-06-01 DOI:10.17516/1998-2836-0234
Tatyana V. Cheshkova, T. A. Sagachenko, R. Min, Dmitriy A. Philatov
{"title":"Change in the Structure of Asphaltene Macromolecules of the Krapivinskoye Oil Field During Biological Oxidation","authors":"Tatyana V. Cheshkova, T. A. Sagachenko, R. Min, Dmitriy A. Philatov","doi":"10.17516/1998-2836-0234","DOIUrl":null,"url":null,"abstract":"Using physico-chemical methods of research (elemental analysis, infrared spectroscopy, selective chemical destruction of sulfide and ester bonds, chromatomass spectrometry) the influence of biodegradation processes on the composition and structure of asphaltenes of light oil at the Krapivinskoye deposit was studied. The results of comparative characteristics of initial asphaltenes and asphaltenes after biodestruction are presented. Attention is paid to studying their structural parameters and composition of fragments bound in asphaltene molecules through ester and sulfide bridges. It has been shown that microbial oxidation of asphaltenes of light oil by aboriginal soil microflora (laboratory experiment) occurs through a series of catalytic processes with formation of intermediate products of transformation – alcohols, aldehydes, ketones and fatty acids. It has been established that “grey and ether-bound” fragments in asphaltene molecules of biodegradable oil differ from “bound” compounds in the structure of the original asphaltenes with the qualitative composition of saturated and aromatic hydrocarbons and heteroatomic components","PeriodicalId":16999,"journal":{"name":"Journal of Siberian Federal University. Chemistry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1998-2836-0234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using physico-chemical methods of research (elemental analysis, infrared spectroscopy, selective chemical destruction of sulfide and ester bonds, chromatomass spectrometry) the influence of biodegradation processes on the composition and structure of asphaltenes of light oil at the Krapivinskoye deposit was studied. The results of comparative characteristics of initial asphaltenes and asphaltenes after biodestruction are presented. Attention is paid to studying their structural parameters and composition of fragments bound in asphaltene molecules through ester and sulfide bridges. It has been shown that microbial oxidation of asphaltenes of light oil by aboriginal soil microflora (laboratory experiment) occurs through a series of catalytic processes with formation of intermediate products of transformation – alcohols, aldehydes, ketones and fatty acids. It has been established that “grey and ether-bound” fragments in asphaltene molecules of biodegradable oil differ from “bound” compounds in the structure of the original asphaltenes with the qualitative composition of saturated and aromatic hydrocarbons and heteroatomic components
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克拉比文斯科油田生物氧化过程中沥青质大分子结构的变化
采用物化研究方法(元素分析、红外光谱、硫化物和酯键选择性化学破坏、质谱分析)研究了生物降解过程对克拉皮温斯克耶油田轻质油沥青质组成和结构的影响。介绍了生物破坏后沥青质与初始沥青质特性的比较结果。重点研究了它们的结构参数和通过酯桥和硫化物桥结合在沥青质分子中的碎片的组成。研究表明,微生物氧化轻质油中的沥青质(室内实验)是通过一系列催化过程产生转化中间产物醇类、醛类、酮类和脂肪酸。生物可降解油沥青质分子中的“灰色和醚结合”碎片与“结合”化合物的结构不同,其定性成分为饱和烃和芳烃以及杂原子成分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
13
期刊最新文献
Preparation of a New Drug Based on Cis-Dichlorodiamminplatin(II), Arabinogalactan and Aptamer AS‑42 and Study of its Biological Activity Utilization of Poplar Leaves (Populus balsamifera L.) by Bioconversion Effect of Anions and Related Organic Compounds on the Kinetics of Thiocyanate Oxidation in a Solar-induced Oxidative System Synthesis, Crystal Structure and Thermodynamic Properties of Apatite-like Lead Gadolinium Vanadato-germanates Study of the Effect of Silica Filler Silica 1165 on the Properties of Rubber for Rail Fastening Gaskets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1