Heat Transfer and Solidification Methodology Involved in the Simulation of Steelmaking

Nitin Amratav, K. K. Kumar, M. Pillai
{"title":"Heat Transfer and Solidification Methodology Involved in the Simulation of Steelmaking","authors":"Nitin Amratav, K. K. Kumar, M. Pillai","doi":"10.11648/J.IJMSA.20211005.13","DOIUrl":null,"url":null,"abstract":"The research work done in the last three decades has made continuous casting an advanced and sophisticated technology. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer and structural deformation. The important numerical modeling method of the continuous casting process has been discussed in reference in this work. The present work describes molten steel flow, heat transfer, solidification, formation of the shell by solidification and coupling, etc. Continuous casting process is presently a well-established manufacturing process for steel production. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer, and structural deformation. To achieve efficient and effective production, the manufacturers of steel keep on searching for new methods which increase productivity. One such kind of method has become more popular to use optimizing using numerical modeling. It describes molten steel flow, formation of the shell by solidification. With the recent advancement in metallurgical methods, the continuous casting process now becomes the main method for steel production. To achieve efficient and effective production, the manufacturers of steel keep on searching for new methods which increase productivity. In this work, we have studied and reviewed the literature to provide current information on the numerical modeling of continuous casting processes.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20211005.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research work done in the last three decades has made continuous casting an advanced and sophisticated technology. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer and structural deformation. The important numerical modeling method of the continuous casting process has been discussed in reference in this work. The present work describes molten steel flow, heat transfer, solidification, formation of the shell by solidification and coupling, etc. Continuous casting process is presently a well-established manufacturing process for steel production. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer, and structural deformation. To achieve efficient and effective production, the manufacturers of steel keep on searching for new methods which increase productivity. One such kind of method has become more popular to use optimizing using numerical modeling. It describes molten steel flow, formation of the shell by solidification. With the recent advancement in metallurgical methods, the continuous casting process now becomes the main method for steel production. To achieve efficient and effective production, the manufacturers of steel keep on searching for new methods which increase productivity. In this work, we have studied and reviewed the literature to provide current information on the numerical modeling of continuous casting processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炼钢过程模拟中涉及的传热和凝固方法
近三十年来的研究工作使连铸成为一项先进而精密的技术。连铸过程包含了流体流动、传热和组织变形等诸多复杂现象。本文对连铸过程的重要数值模拟方法进行了探讨。本文介绍了钢水的流动、传热、凝固、凝固耦合成壳等过程。连铸工艺是目前一种行之有效的钢铁生产工艺。连铸过程包含了流体流动、传热和组织变形等多种复杂现象。为了实现高效率的生产,钢铁制造商不断寻求提高生产率的新方法。其中一种比较流行的方法是利用数值模拟进行优化。它描述了钢水的流动,凝固形成的外壳。随着冶金技术的进步,连铸法已成为炼钢的主要方法。为了实现高效率的生产,钢铁制造商不断寻求提高生产率的新方法。在这项工作中,我们研究和回顾了文献,以提供有关连铸过程数值模拟的最新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1