Layrub

Q1 Computer Science ACM Sigplan Notices Pub Date : 2018-02-10 DOI:10.1145/3200691.3178528
Bo Liu, Wenbin Jiang, Hai Jin, Xuanhua Shi, Yang Ma
{"title":"Layrub","authors":"Bo Liu, Wenbin Jiang, Hai Jin, Xuanhua Shi, Yang Ma","doi":"10.1145/3200691.3178528","DOIUrl":null,"url":null,"abstract":"Growing accuracy and robustness of Deep Neural Networks (DNN) models are accompanied by growing model capacity (going deeper or wider). However, high memory requirements of those models make it difficult to execute the training process in one GPU. To address it, we first identify the memory usage characteristics for deep and wide convolutional networks, and demonstrate the opportunities of memory reuse on both intra-layer and inter-layer levels. We then present Layrub, a runtime data placement strategy that orchestrates the execution of training process. It achieves layer-centric reuse to reduce memory consumption for extreme-scale deep learning that cannot be run on one single GPU.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"8 1","pages":"405 - 406"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3200691.3178528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Growing accuracy and robustness of Deep Neural Networks (DNN) models are accompanied by growing model capacity (going deeper or wider). However, high memory requirements of those models make it difficult to execute the training process in one GPU. To address it, we first identify the memory usage characteristics for deep and wide convolutional networks, and demonstrate the opportunities of memory reuse on both intra-layer and inter-layer levels. We then present Layrub, a runtime data placement strategy that orchestrates the execution of training process. It achieves layer-centric reuse to reduce memory consumption for extreme-scale deep learning that cannot be run on one single GPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经网络(DNN)模型精度和鲁棒性的提高伴随着模型容量的增长(深度或广度)。然而,这些模型的高内存要求使得在一个GPU上执行训练过程变得困难。为了解决这个问题,我们首先确定了深度和宽卷积网络的内存使用特征,并展示了在层内和层间级别上内存重用的机会。然后,我们介绍Layrub,这是一个运行时数据放置策略,可以编排训练过程的执行。它实现了以层为中心的重用,以减少无法在单个GPU上运行的极端规模深度学习的内存消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Sigplan Notices
ACM Sigplan Notices 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
0
审稿时长
2-4 weeks
期刊介绍: The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).
期刊最新文献
Outcomes of Endoscopic Drainage in Children with Pancreatic Fluid Collections: A Systematic Review and Meta-Analysis. Letter from the Chair SEIS Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory Management, ISMM 2018, Philadelphia, PA, USA, June 18, 2018 Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2018, Philadelphia, PA, USA, June 19-20, 2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1