{"title":"Following the organism to map synthetic genomics","authors":"Maya Hey, Erika A. Szymanski","doi":"10.1016/j.biotno.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic genomics, or engineering biology at the level of whole genomes and whole organisms, is an emerging outgrowth of parts-based synthetic biology. This nascent subfield is also diverse and difficult to characterize. As social scientists investigating responsible research and innovation in synthetic genomics, we suggest that focusing on the organism is a fruitful approach to making sense of the diversity it encompasses. Here, we offer a heuristic in the form of a tagging system to organize projects by the roles the engineered organism is asked to perform. We suggest several reasons why this system is useful for understanding the current shape and future directions of the field, especially in light of the need to ask: how does engineering biology contribute to building a future of sustainable relationships with other creatures?</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 50-53"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266590692200006X/pdfft?md5=0dc74f78398b9476599067333e9dd21b&pid=1-s2.0-S266590692200006X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266590692200006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic genomics, or engineering biology at the level of whole genomes and whole organisms, is an emerging outgrowth of parts-based synthetic biology. This nascent subfield is also diverse and difficult to characterize. As social scientists investigating responsible research and innovation in synthetic genomics, we suggest that focusing on the organism is a fruitful approach to making sense of the diversity it encompasses. Here, we offer a heuristic in the form of a tagging system to organize projects by the roles the engineered organism is asked to perform. We suggest several reasons why this system is useful for understanding the current shape and future directions of the field, especially in light of the need to ask: how does engineering biology contribute to building a future of sustainable relationships with other creatures?