Human gesture analysis for action recognition

Kaveri V Sonani, M. Zaveri, Sanjay Garg
{"title":"Human gesture analysis for action recognition","authors":"Kaveri V Sonani, M. Zaveri, Sanjay Garg","doi":"10.1109/ICAECCT.2016.7942571","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for human gesture analysis for the action recognition using Microsoft kinect sensor to build physiotherapy application. Kinect is able to generate depth image from RGB image and generate human skeleton from the depth image. In this method, therapist may record the exercise and patients are required to mimic that exercise at home. This system is able to track their progress as well as recognize the action of patients. If a patient do not perform properly, then it gives the suggestion based on the information of angle between joints of human skeleton. We design codebook for each action, which contains different key posture frames for each action. To find the match between two frames, we make the use of the concept of star distance. We evaluate our proposed system with large number of scenarios and analysed with Hidden Markov Model to recognise the action.","PeriodicalId":6629,"journal":{"name":"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)","volume":"6 1","pages":"144-149"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCT.2016.7942571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an algorithm for human gesture analysis for the action recognition using Microsoft kinect sensor to build physiotherapy application. Kinect is able to generate depth image from RGB image and generate human skeleton from the depth image. In this method, therapist may record the exercise and patients are required to mimic that exercise at home. This system is able to track their progress as well as recognize the action of patients. If a patient do not perform properly, then it gives the suggestion based on the information of angle between joints of human skeleton. We design codebook for each action, which contains different key posture frames for each action. To find the match between two frames, we make the use of the concept of star distance. We evaluate our proposed system with large number of scenarios and analysed with Hidden Markov Model to recognise the action.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动作识别的人类手势分析
在本文中,我们提出了一种人类手势分析算法,用于使用微软kinect传感器进行动作识别,以构建物理治疗应用。Kinect能够从RGB图像生成深度图像,并从深度图像生成人体骨骼。在这种方法中,治疗师可以记录运动,并要求患者在家中模仿该运动。该系统能够跟踪他们的进展,并识别患者的动作。如果患者表现不佳,则根据人体骨骼关节之间的角度信息给出建议。我们为每个动作设计了码本,其中包含每个动作不同的关键姿态帧。为了找到两帧之间的匹配,我们使用了星距的概念。我们用大量的场景来评估我们提出的系统,并使用隐马尔可夫模型进行分析以识别动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speakers Emotweet: Sentiment Analysis tool for twitter Design of faster & power efficient sense amplifier using VLSI technology A comparative study on distance measuring approches for permutation representations An embedded system of dedicated and real-time fire detector and locator technology as an interactive response mechanism in fire occurrences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1