Information Bottleneck Learning Using Privileged Information for Visual Recognition

Saeid Motiian, Marco Piccirilli, D. Adjeroh, Gianfranco Doretto
{"title":"Information Bottleneck Learning Using Privileged Information for Visual Recognition","authors":"Saeid Motiian, Marco Piccirilli, D. Adjeroh, Gianfranco Doretto","doi":"10.1109/CVPR.2016.166","DOIUrl":null,"url":null,"abstract":"We explore the visual recognition problem from a main data view when an auxiliary data view is available during training. This is important because it allows improving the training of visual classifiers when paired additional data is cheaply available, and it improves the recognition from multi-view data when there is a missing view at testing time. The problem is challenging because of the intrinsic asymmetry caused by the missing auxiliary view during testing. We account for such view during training by extending the information bottleneck method, and by combining it with risk minimization. In this way, we establish an information theoretic principle for leaning any type of visual classifier under this particular setting. We use this principle to design a large-margin classifier with an efficient optimization in the primal space. We extensively compare our method with the state-of-the-art on different visual recognition datasets, and with different types of auxiliary data, and show that the proposed framework has a very promising potential.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"11 1","pages":"1496-1505"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

We explore the visual recognition problem from a main data view when an auxiliary data view is available during training. This is important because it allows improving the training of visual classifiers when paired additional data is cheaply available, and it improves the recognition from multi-view data when there is a missing view at testing time. The problem is challenging because of the intrinsic asymmetry caused by the missing auxiliary view during testing. We account for such view during training by extending the information bottleneck method, and by combining it with risk minimization. In this way, we establish an information theoretic principle for leaning any type of visual classifier under this particular setting. We use this principle to design a large-margin classifier with an efficient optimization in the primal space. We extensively compare our method with the state-of-the-art on different visual recognition datasets, and with different types of auxiliary data, and show that the proposed framework has a very promising potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用特权信息进行视觉识别的信息瓶颈学习
在训练过程中,当辅助数据视图可用时,我们从主数据视图探索视觉识别问题。这很重要,因为当配对的附加数据很便宜时,它可以改进视觉分类器的训练,并且当测试时存在缺失视图时,它可以改进对多视图数据的识别。由于在测试过程中缺少辅助视图导致了固有的不对称性,因此该问题具有挑战性。我们通过扩展信息瓶颈方法,并将其与风险最小化相结合,在训练过程中考虑到这种观点。通过这种方式,我们建立了在这种特定设置下学习任何类型的视觉分类器的信息论原理。我们利用这一原理设计了一个在原始空间进行高效优化的大边界分类器。我们在不同的视觉识别数据集和不同类型的辅助数据上,将我们的方法与最新的方法进行了广泛的比较,并表明所提出的框架具有非常有前途的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1