ImECGnet: Cardiovascular Disease Classification from Image-Based ECG Data Using a Multibranch Convolutional Neural Network

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-03-01 DOI:10.18178/joig.11.1.9-14
Amir Ghahremani, C. Lofi
{"title":"ImECGnet: Cardiovascular Disease Classification from Image-Based ECG Data Using a Multibranch Convolutional Neural Network","authors":"Amir Ghahremani, C. Lofi","doi":"10.18178/joig.11.1.9-14","DOIUrl":null,"url":null,"abstract":"Reliable Cardiovascular Disease (CVD) classification performed by a smart system can assist medical doctors in recognizing heart illnesses in patients more efficiently and effectively. Electrocardiogram (ECG) signals are an important diagnostic tool as they are already available early in the patients’ health diagnosis process and contain valuable indicators for various CVDs. Most ECG processing methods represent ECG data as a time series, often as a matrix with each row containing the measurements of a sensor lead; and/or the transforms of such time series like wavelet power spectrums. While methods processing such time-series data have been shown to work well in benchmarks, they are still highly dependent on factors like input noise and sequence length, and cannot always correlate lead data from different sensors well. In this paper, we propose to represent ECG signals incorporating all lead data plotted as a single image, an approach not yet explored by literature. We will show that such an image representation combined with our newly proposed convolutional neural network specifically designed for CVD classification can overcome the aforementioned shortcomings. The proposed (Convolutional Neural Network) CNN is designed to extract features representing both the proportional relationships of different leads to each other and the characteristics of each lead separately. Empirical validation on the publicly available PTB, MIT-BIH, and St.-Petersburg benchmark databases shows that the proposed method outperforms time seriesbased state-of-the-art approaches, yielding classification accuracy of 97.91%, 99.62%, and 98.70%, respectively.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.1.9-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Reliable Cardiovascular Disease (CVD) classification performed by a smart system can assist medical doctors in recognizing heart illnesses in patients more efficiently and effectively. Electrocardiogram (ECG) signals are an important diagnostic tool as they are already available early in the patients’ health diagnosis process and contain valuable indicators for various CVDs. Most ECG processing methods represent ECG data as a time series, often as a matrix with each row containing the measurements of a sensor lead; and/or the transforms of such time series like wavelet power spectrums. While methods processing such time-series data have been shown to work well in benchmarks, they are still highly dependent on factors like input noise and sequence length, and cannot always correlate lead data from different sensors well. In this paper, we propose to represent ECG signals incorporating all lead data plotted as a single image, an approach not yet explored by literature. We will show that such an image representation combined with our newly proposed convolutional neural network specifically designed for CVD classification can overcome the aforementioned shortcomings. The proposed (Convolutional Neural Network) CNN is designed to extract features representing both the proportional relationships of different leads to each other and the characteristics of each lead separately. Empirical validation on the publicly available PTB, MIT-BIH, and St.-Petersburg benchmark databases shows that the proposed method outperforms time seriesbased state-of-the-art approaches, yielding classification accuracy of 97.91%, 99.62%, and 98.70%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ImECGnet:使用多分支卷积神经网络从基于图像的心电数据中分类心血管疾病
通过智能系统进行可靠的心血管疾病(CVD)分类,可以帮助医生更有效地识别患者的心脏病。心电图(ECG)信号是一种重要的诊断工具,因为它在患者健康诊断过程的早期就可以获得,并且包含各种心血管疾病的有价值的指标。大多数心电处理方法将心电数据表示为时间序列,通常作为矩阵,每行包含传感器引线的测量值;或者时间序列的变换比如小波功率谱。虽然处理此类时间序列数据的方法在基准测试中表现良好,但它们仍然高度依赖于输入噪声和序列长度等因素,并且不能总是将来自不同传感器的引线数据很好地关联起来。在本文中,我们建议将合并所有导联数据的心电信号表示为单个图像,这是一种尚未被文献探索的方法。我们将证明这种图像表示与我们新提出的专门为CVD分类设计的卷积神经网络相结合可以克服上述缺点。本文提出的卷积神经网络(Convolutional Neural Network) CNN旨在提取既代表不同引线之间的比例关系的特征,又分别代表每个引线的特征。在公开可用的PTB、MIT-BIH和st . petersburg基准数据库上的实证验证表明,所提出的方法优于基于时间序列的最先进方法,分类准确率分别为97.91%、99.62%和98.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1