Defect Evolution in Y0.5Gd0.5Ba2Cu3O7-δ Layer by H Ion Irradiation

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Acta Physica Sinica Pub Date : 2023-01-01 DOI:10.7498/aps.72.20221612
Dan Min, 金凡亚, Chen Lun-Jiang, He Yan-Bin, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Yin, Jin Fan-Ya
{"title":"Defect Evolution in Y0.5Gd0.5Ba2Cu3O7-δ Layer by H Ion Irradiation","authors":"Dan Min, 金凡亚, Chen Lun-Jiang, He Yan-Bin, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Yin, Jin Fan-Ya","doi":"10.7498/aps.72.20221612","DOIUrl":null,"url":null,"abstract":"In order to further improve the superconducting current carrying capacity of REBCO coated conductor under strong magnetic field, ion irradiation is used to generate the pinning center of introduced magnetic flux in the REBCO coated conductor. In this paper, the H-ion irradiation of REBCO second generation high temperature superconductor strip was carried out by using the 320kV high charge state ion synthesis research platform. DB-SPBA combined with Raman spectroscopy was used to measure the change of microstructure in YBCO samples irradiated by H+ions within the range of 5.0×1014~1.0×1016. The positron annihilation parameters in YBCO before and after irradiation were analyzed. It is found that after 100 keV H+ion irradiation, a large number of defects including vacancy, vacancy group or dislocation group are produced in the superconducting layer. The larger the irradiation dose, the more vacancy type defects are produced, the more complex the defect types are, and the annihilation mechanism of positrons in the defects changes. Raman spectroscopy results show that with the increase of H+ion irradiation dose, the oxygen atoms in the coating rearrange, the plane spacing increases, the orthogonal phase structure of the coating is destroyed, and the degree of order decreases. The defects produced by such ion irradiation lay a foundation for the introduction of flux pinning centers. Further research can be carried out in combination with X-ray diffractometer, transmission electron microscope, superconductivity and other testing methods to provide theoretical and practical reference for the optimization of material properties.","PeriodicalId":6995,"journal":{"name":"Acta Physica Sinica","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20221612","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further improve the superconducting current carrying capacity of REBCO coated conductor under strong magnetic field, ion irradiation is used to generate the pinning center of introduced magnetic flux in the REBCO coated conductor. In this paper, the H-ion irradiation of REBCO second generation high temperature superconductor strip was carried out by using the 320kV high charge state ion synthesis research platform. DB-SPBA combined with Raman spectroscopy was used to measure the change of microstructure in YBCO samples irradiated by H+ions within the range of 5.0×1014~1.0×1016. The positron annihilation parameters in YBCO before and after irradiation were analyzed. It is found that after 100 keV H+ion irradiation, a large number of defects including vacancy, vacancy group or dislocation group are produced in the superconducting layer. The larger the irradiation dose, the more vacancy type defects are produced, the more complex the defect types are, and the annihilation mechanism of positrons in the defects changes. Raman spectroscopy results show that with the increase of H+ion irradiation dose, the oxygen atoms in the coating rearrange, the plane spacing increases, the orthogonal phase structure of the coating is destroyed, and the degree of order decreases. The defects produced by such ion irradiation lay a foundation for the introduction of flux pinning centers. Further research can be carried out in combination with X-ray diffractometer, transmission electron microscope, superconductivity and other testing methods to provide theoretical and practical reference for the optimization of material properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H离子辐照Y0.5Gd0.5Ba2Cu3O7-δ层缺陷演化
为了进一步提高REBCO涂层导体在强磁场作用下的超导载流能力,采用离子辐照的方法在REBCO涂层导体中产生引入磁通量的钉住中心。本文利用320kV高电荷态离子合成研究平台,对REBCO第二代高温超导体带材进行了h离子辐照。采用DB-SPBA结合拉曼光谱法测量了H+离子辐照YBCO样品在5.0×1014~1.0×1016范围内的微观结构变化。分析了YBCO辐照前后的正电子湮灭参数。发现在100 keV H+离子辐照后,超导层中产生了大量的缺陷,包括空位、空位族或位错族。辐照剂量越大,产生的空位型缺陷越多,缺陷类型越复杂,正电子在缺陷中的湮灭机制发生变化。拉曼光谱结果表明,随着H+离子辐照剂量的增加,涂层中的氧原子重新排列,平面间距增大,涂层的正交相结构被破坏,有序度降低。离子辐照产生的缺陷为引入钉钉中心奠定了基础。可以结合x射线衍射仪、透射电镜、超导等测试方法进行进一步的研究,为材料性能的优化提供理论和实践参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physica Sinica
Acta Physica Sinica 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
期刊最新文献
Simulation method of urban evacuation based on mesoscopic cellular automata Medium Correction to Gravitational Form Factors Research progress of applications of freestanding single crystal oxide thin film Research progress of ultra-high spatiotemporal resolved microscopy High-fidelity single-qubit gates of a strong driven singlet-triplet qubit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1