Prediction of Heme Binding Sites in Heme Proteins Using an Integrative Sequence Profile Coupling Evolutionary Information with Physicochemical Properties

Y. Xiong, Wen Zhang, Tao Zeng, Juan Liu
{"title":"Prediction of Heme Binding Sites in Heme Proteins Using an Integrative Sequence Profile Coupling Evolutionary Information with Physicochemical Properties","authors":"Y. Xiong, Wen Zhang, Tao Zeng, Juan Liu","doi":"10.1109/BIBM.2011.8","DOIUrl":null,"url":null,"abstract":"Heme-protein interactions are essential for various biological processes such as electron transfer, catalysis, signal transduction and the control of gene expression. The knowledge of heme binding residues can provide crucial clues to understand the mechanism of heme-protein interactions and aid in functional annotation. In the present work, we propose a sequence-based approach for the accurate prediction of heme binding residues by a novel integrative sequence profile coupling position specific scoring matrices with heme specific physicochemical properties. Particularly, we design an intuitive feature selection scheme for informative physicochemical properties. As shown in the primary results, our integrative sequence profile approach for prediction of heme binding residues outperforms the conventional methods using amino acid and evolutionary information on the 5-fold cross validation and the independent test.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"110 1","pages":"143-146"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heme-protein interactions are essential for various biological processes such as electron transfer, catalysis, signal transduction and the control of gene expression. The knowledge of heme binding residues can provide crucial clues to understand the mechanism of heme-protein interactions and aid in functional annotation. In the present work, we propose a sequence-based approach for the accurate prediction of heme binding residues by a novel integrative sequence profile coupling position specific scoring matrices with heme specific physicochemical properties. Particularly, we design an intuitive feature selection scheme for informative physicochemical properties. As shown in the primary results, our integrative sequence profile approach for prediction of heme binding residues outperforms the conventional methods using amino acid and evolutionary information on the 5-fold cross validation and the independent test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用结合进化信息和物理化学性质的综合序列图谱预测血红素蛋白中的血红素结合位点
血红蛋白相互作用是各种生物过程必不可少的,如电子转移、催化、信号转导和基因表达的控制。血红素结合残基的知识可以为理解血红素蛋白相互作用的机制提供重要线索,并有助于功能注释。在目前的工作中,我们提出了一种基于序列的方法,通过一种新的整合序列谱耦合具有血红素特异性物理化学性质的位置特异性评分矩阵来准确预测血红素结合残基。特别地,我们设计了一个直观的特征选择方案,用于信息丰富的物理化学性质。正如初步结果所示,我们的综合序列谱预测血红素结合残基的方法在5倍交叉验证和独立测试中优于使用氨基酸和进化信息的传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1