Modified Multi-Verse Optimizer for Nonlinear System Identification of a Double Pendulum Overhead Crane

J. J. Jui, Mohd Ashraf Ahmad, M. Rashid
{"title":"Modified Multi-Verse Optimizer for Nonlinear System Identification of a Double Pendulum Overhead Crane","authors":"J. J. Jui, Mohd Ashraf Ahmad, M. Rashid","doi":"10.1109/SCOReD53546.2021.9652744","DOIUrl":null,"url":null,"abstract":"This paper presents the identification of double pendulum overhead crane (DPOC) plant based on the hybrid Multi-Verse Optimizer with Sine Cosine Algorithm (HMVOSCA) using the continuous-time Hammerstein model. In the HMVOSCA algorithm, the new position updating mechanism of the traditional MVO method is modified based on the sine function and cosine function which is taken from the Sine Cosine Algorithm (SCA). Moreover, an average position is chosen by computing the mean between the current position and the current best position obtained so far. These modifications are mainly for balancing exploration and exploitation and escaping from local optima and expected better identification accuracy of the DPOC plant. In the Hammerstein model identification, a continuous-time linear subsystem is used, which is more suitable for representing any real plant. The HMVOSCA algorithm is used to tune the linear and nonlinear parameters to reduce the gap between the estimated results and the actual results. The efficiency of the proposed HMVOSCA algorithm is evaluated using the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's test method. The experimental findings illustrate that the HMVOSCA algorithm can identify a Hammerstein model that generates an estimated output like the actual DPOC system output. Moreover, the identified results also show that the HMVOSCA algorithm outperforms other existing metaheuristics algorithms.","PeriodicalId":6762,"journal":{"name":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","volume":"18 1","pages":"212-217"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD53546.2021.9652744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the identification of double pendulum overhead crane (DPOC) plant based on the hybrid Multi-Verse Optimizer with Sine Cosine Algorithm (HMVOSCA) using the continuous-time Hammerstein model. In the HMVOSCA algorithm, the new position updating mechanism of the traditional MVO method is modified based on the sine function and cosine function which is taken from the Sine Cosine Algorithm (SCA). Moreover, an average position is chosen by computing the mean between the current position and the current best position obtained so far. These modifications are mainly for balancing exploration and exploitation and escaping from local optima and expected better identification accuracy of the DPOC plant. In the Hammerstein model identification, a continuous-time linear subsystem is used, which is more suitable for representing any real plant. The HMVOSCA algorithm is used to tune the linear and nonlinear parameters to reduce the gap between the estimated results and the actual results. The efficiency of the proposed HMVOSCA algorithm is evaluated using the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's test method. The experimental findings illustrate that the HMVOSCA algorithm can identify a Hammerstein model that generates an estimated output like the actual DPOC system output. Moreover, the identified results also show that the HMVOSCA algorithm outperforms other existing metaheuristics algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双摆桥式起重机非线性系统辨识的改进多元优化算法
本文采用连续时间Hammerstein模型,提出了一种基于正弦余弦算法混合多维优化器(HMVOSCA)的双摆桥式起重机(DPOC)装置辨识方法。在HMVOSCA算法中,基于从正余弦算法(SCA)中提取的正弦函数和余弦函数,对传统MVO方法的新的位置更新机制进行了改进。此外,通过计算当前位置与当前最佳位置之间的平均值来选择平均位置。这些修改主要是为了平衡勘探开发和摆脱局部最优,期望提高DPOC工厂的识别精度。在Hammerstein模型辨识中,采用连续时间线性子系统,更适合于表示任何真实对象。利用HMVOSCA算法对线性和非线性参数进行调整,减小估计结果与实际结果之间的差距。采用收敛曲线法、参数估计误差法、波德图法、函数图法和Wilcoxon检验法对该算法的有效性进行了评价。实验结果表明,HMVOSCA算法可以识别出产生与实际DPOC系统输出相似的估计输出的Hammerstein模型。此外,识别结果还表明,HMVOSCA算法优于其他现有的元启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Sizing of Solar Panel and Battery Storage for A Smart Aquaponic System eMarket for Local Farmers Advanced Encryption Standard Mobile Application to Improve College Entrance Security in UNIMAS Automated DJ Pad Audio Mashups Playback Compositions in Computer Music Utilizing Harmony Search Algorithm Ensembles for Text-Based Sarcasm Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1