{"title":"Differential Pulse Voltammetric and Conductimetric Determination ofDiphenylpyraline HCl in Raw Material and Pharmaceutical Preparation","authors":"N. Abdel-Ghani, S. Hussein","doi":"10.2174/1876505X00901010001","DOIUrl":null,"url":null,"abstract":"Diphenylpyraline hydrochloride (Di-HCl) has been determined in raw material and its pharmaceutical prepara- tion Eskornade capsule (5mg/capsule) using differential pulse voltammetry (DPV) and conductimetric determination. It was found that Di-HCl gives a characteristic cyclic voltammetric (CV) and differential pulse voltammetric (DPV) peak in acetonitrile using platinum and glassy carbon sensors as working electrodes. The peak current (Ip) of the DPV peak in- creases linearly within the concentration range 4.5 x 10 -4 -1x10 -2 mol/L of the investigated drug. The concentration of Di- HCl in raw drug material and in its pharmaceutical preparations was determined using standard addition method, Randles- Sevcik equation and indirectly via its complexation with sodium tetra phenylborate (NaTPB), the obtained average recov- eries were 101.44 and 100.49 with standard deviation (SD) 0.45 and 0.38 (n = 4) for platinum and glassy carbon elec- trodes respectively. The effect of scan rate, sample concentration and supporting electrolyte on the peak current (Ip) and peak potential (Ep) was investigated. In addition a simple and sensitive conductimetric method was used for determination of Di-HCl based on its ion associa- tion with sodium tetraphenylborate (NaTPB). The effect of solvent, reagent concentration, temperature and molar ratio was studied. The obtained average recovery was 101.44 with SD 0.45 (n = 4).","PeriodicalId":23074,"journal":{"name":"The Open Electrochemistry Journal","volume":"os-10 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Electrochemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876505X00901010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Diphenylpyraline hydrochloride (Di-HCl) has been determined in raw material and its pharmaceutical prepara- tion Eskornade capsule (5mg/capsule) using differential pulse voltammetry (DPV) and conductimetric determination. It was found that Di-HCl gives a characteristic cyclic voltammetric (CV) and differential pulse voltammetric (DPV) peak in acetonitrile using platinum and glassy carbon sensors as working electrodes. The peak current (Ip) of the DPV peak in- creases linearly within the concentration range 4.5 x 10 -4 -1x10 -2 mol/L of the investigated drug. The concentration of Di- HCl in raw drug material and in its pharmaceutical preparations was determined using standard addition method, Randles- Sevcik equation and indirectly via its complexation with sodium tetra phenylborate (NaTPB), the obtained average recov- eries were 101.44 and 100.49 with standard deviation (SD) 0.45 and 0.38 (n = 4) for platinum and glassy carbon elec- trodes respectively. The effect of scan rate, sample concentration and supporting electrolyte on the peak current (Ip) and peak potential (Ep) was investigated. In addition a simple and sensitive conductimetric method was used for determination of Di-HCl based on its ion associa- tion with sodium tetraphenylborate (NaTPB). The effect of solvent, reagent concentration, temperature and molar ratio was studied. The obtained average recovery was 101.44 with SD 0.45 (n = 4).