Auto-encoder LSTM for Li-ion SOH prediction: a comparative study on various benchmark datasets

Paul Audin, I. Jorge, T. Mesbahi, Ahmed Samet, F. D. Beuvron, R. Boné
{"title":"Auto-encoder LSTM for Li-ion SOH prediction: a comparative study on various benchmark datasets","authors":"Paul Audin, I. Jorge, T. Mesbahi, Ahmed Samet, F. D. Beuvron, R. Boné","doi":"10.1109/ICMLA52953.2021.00246","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries are used in most battery powered devices. Today’s research on Lithium-ion batteries mainly focuses on better energy management strategies and predictive maintenance. In this paper, a new approach based on auto-encoders and long short-term memory neural networks applied to usage data (voltage, current, temperature) is used to make a State of Health prediction. Encouraging results are obtained when conducting tests on various battery ageing datasets published by Sandia National Laboratories, the Massachusetts Institute of Technology and NASA’s Prognostics Center of Excellence.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"5 1","pages":"1529-1536"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Lithium-ion batteries are used in most battery powered devices. Today’s research on Lithium-ion batteries mainly focuses on better energy management strategies and predictive maintenance. In this paper, a new approach based on auto-encoders and long short-term memory neural networks applied to usage data (voltage, current, temperature) is used to make a State of Health prediction. Encouraging results are obtained when conducting tests on various battery ageing datasets published by Sandia National Laboratories, the Massachusetts Institute of Technology and NASA’s Prognostics Center of Excellence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锂离子SOH预测的自编码器LSTM:不同基准数据集的比较研究
锂离子电池用于大多数电池供电的设备。目前对锂离子电池的研究主要集中在更好的能量管理策略和预测性维护上。本文提出了一种基于自编码器和长短期记忆神经网络的新方法,将其应用于使用数据(电压、电流、温度)进行健康状态预测。在对桑迪亚国家实验室、麻省理工学院和美国宇航局卓越预测中心发布的各种电池老化数据集进行测试时,获得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1