Assessing Cardiac Functions of Zebrafish from Echocardiography Using Deep Learning

Inf. Comput. Pub Date : 2023-06-16 DOI:10.3390/info14060341
Mao-Hsiang Huang, Amir Naderi, Ping Zhu, Xiaolei Xu, H. Cao
{"title":"Assessing Cardiac Functions of Zebrafish from Echocardiography Using Deep Learning","authors":"Mao-Hsiang Huang, Amir Naderi, Ping Zhu, Xiaolei Xu, H. Cao","doi":"10.3390/info14060341","DOIUrl":null,"url":null,"abstract":"Zebrafish is a well-established model organism for cardiovascular disease studies in which one of the most popular tasks is to assess cardiac functions from the heart beating echo-videos. However, current techniques are often time-consuming and error-prone, making them unsuitable for large-scale analysis. To address this problem, we designed a method to automatically evaluate the ejection fraction of zebrafish from heart echo-videos using a deep-learning model architecture. Our model achieved a validation Dice coefficient of 0.967 and an IoU score of 0.937 which attest to its high accuracy. Our test findings revealed an error rate ranging from 0.11% to 37.05%, with an average error rate of 9.83%. This method is widely applicable in any laboratory setting and can be combined with binary recordings to optimize the efficacy and consistency of large-scale video analysis. By facilitating the precise quantification and monitoring of cardiac function in zebrafish, our approach outperforms traditional methods, substantially reducing the time and effort required for data analysis. The advantages of our method make it a promising tool for cardiovascular research using zebrafish.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14060341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zebrafish is a well-established model organism for cardiovascular disease studies in which one of the most popular tasks is to assess cardiac functions from the heart beating echo-videos. However, current techniques are often time-consuming and error-prone, making them unsuitable for large-scale analysis. To address this problem, we designed a method to automatically evaluate the ejection fraction of zebrafish from heart echo-videos using a deep-learning model architecture. Our model achieved a validation Dice coefficient of 0.967 and an IoU score of 0.937 which attest to its high accuracy. Our test findings revealed an error rate ranging from 0.11% to 37.05%, with an average error rate of 9.83%. This method is widely applicable in any laboratory setting and can be combined with binary recordings to optimize the efficacy and consistency of large-scale video analysis. By facilitating the precise quantification and monitoring of cardiac function in zebrafish, our approach outperforms traditional methods, substantially reducing the time and effort required for data analysis. The advantages of our method make it a promising tool for cardiovascular research using zebrafish.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的超声心动图评估斑马鱼的心功能
斑马鱼是一种公认的心血管疾病研究的模式生物,其中最受欢迎的任务之一是通过心脏跳动的回声视频来评估心脏功能。然而,目前的技术往往是耗时和容易出错,使他们不适合大规模的分析。为了解决这个问题,我们设计了一种使用深度学习模型架构来自动评估斑马鱼心脏回声视频中的射血分数的方法。我们的模型获得了0.967的验证Dice系数和0.937的IoU分数,证明了它的高准确性。我们的测试结果显示错误率在0.11%到37.05%之间,平均错误率为9.83%。该方法广泛适用于任何实验室环境,并可与二进制记录相结合,以优化大规模视频分析的有效性和一致性。通过促进对斑马鱼心脏功能的精确量化和监测,我们的方法优于传统方法,大大减少了数据分析所需的时间和精力。该方法的优点使其成为利用斑马鱼进行心血管研究的一种很有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1