Outperforming Clinical Practices in Breast Cancer Detection: A Superior Dense Neural Network in Classification and False Negative Reduction

Patrick Bujok, Maria Jensen, Steffen M. Larsen, R. A. Alphinas
{"title":"Outperforming Clinical Practices in Breast Cancer Detection: A Superior Dense Neural Network in Classification and False Negative Reduction","authors":"Patrick Bujok, Maria Jensen, Steffen M. Larsen, R. A. Alphinas","doi":"10.1109/ICMLA52953.2021.00098","DOIUrl":null,"url":null,"abstract":"Machine Learning applications provide a promising method to support clinical practitioners in Breast Cancer (BC) detection. Currently, Fine Needle Aspiration (FNA) is a commonly applied diagnostic method for BC tumors, which, however, is associated with ominous false negative misclassifications. For this purpose, the present study explores Artificial Neural Networks (ANNs) with the aim of outperforming clinical practices via FNA in classifying benign or malignant BC cases with regard to an improved accuracy and reduced False Negative Rate (FNR) using the Breast Cancer Wisconsin (Diagnostic) Dataset (WDBC). The findings reveal that a dense ANN with a single hidden layer including 15 neurons can reach a testing accuracy of 98.60% and a FNR of 0% on a scaled dataset. In combination with several introduced improvement measures, a high degree of generalizability is associated with the model under the consideration of the relatively small dataset. As a result, this model outperforms not only clinical practitioners but also 72 classifiers from the recent literature.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"25 1","pages":"589-594"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning applications provide a promising method to support clinical practitioners in Breast Cancer (BC) detection. Currently, Fine Needle Aspiration (FNA) is a commonly applied diagnostic method for BC tumors, which, however, is associated with ominous false negative misclassifications. For this purpose, the present study explores Artificial Neural Networks (ANNs) with the aim of outperforming clinical practices via FNA in classifying benign or malignant BC cases with regard to an improved accuracy and reduced False Negative Rate (FNR) using the Breast Cancer Wisconsin (Diagnostic) Dataset (WDBC). The findings reveal that a dense ANN with a single hidden layer including 15 neurons can reach a testing accuracy of 98.60% and a FNR of 0% on a scaled dataset. In combination with several introduced improvement measures, a high degree of generalizability is associated with the model under the consideration of the relatively small dataset. As a result, this model outperforms not only clinical practitioners but also 72 classifiers from the recent literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在乳腺癌检测中表现优异的临床实践:在分类和假阴性减少方面的优越密集神经网络
机器学习应用为支持临床医生检测乳腺癌(BC)提供了一种很有前途的方法。目前,细针穿刺(FNA)是一种常用的诊断BC肿瘤的方法,然而,它与不祥的假阴性错误分类有关。为此,本研究探索了人工神经网络(ann),目的是通过FNA在使用乳腺癌威斯康星(诊断)数据集(WDBC)对良性或恶性BC病例进行分类方面优于临床实践,提高准确性并降低假阴性率(FNR)。研究结果表明,包含15个神经元的单个隐藏层的密集神经网络在缩放数据集上的测试准确率为98.60%,FNR为0%。结合引入的几个改进措施,在考虑相对较小的数据集的情况下,该模型具有高度的泛化性。因此,该模型不仅优于临床医生,而且优于最近文献中的72个分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1