Depression Identification Through Social Media Posts: Data Preprocessing for Data Visualization of Tweets

Kevin Chow Kye Ven, Adeline Ng Khai Ying, Ngoo Qi Jie, Shoo Yen Lun, Scott Lee Chuen Yuen, D. Handayani, N. Hamzah, M. Lubis, T. Mantoro
{"title":"Depression Identification Through Social Media Posts: Data Preprocessing for Data Visualization of Tweets","authors":"Kevin Chow Kye Ven, Adeline Ng Khai Ying, Ngoo Qi Jie, Shoo Yen Lun, Scott Lee Chuen Yuen, D. Handayani, N. Hamzah, M. Lubis, T. Mantoro","doi":"10.1109/ICCED53389.2021.9664845","DOIUrl":null,"url":null,"abstract":"Nowadays, mental health can be defined as a primary concern with the increased awareness related to the emergence of many campaigns to keep the body remaining healthy from the aspects that may be ignored. Therefore, the signs of deterioration are not always clear to be seen. Thus, social media is a safe space where many individuals often share their inner self, true feelings and honest impression. This is especially true of one of the popular social media platforms, Twitter. This paper explores the possibility of predicting the occurrence of depression in individuals through posts made. The results of the data pre-processing will be displayed through data visualization techniques.","PeriodicalId":6800,"journal":{"name":"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCED53389.2021.9664845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, mental health can be defined as a primary concern with the increased awareness related to the emergence of many campaigns to keep the body remaining healthy from the aspects that may be ignored. Therefore, the signs of deterioration are not always clear to be seen. Thus, social media is a safe space where many individuals often share their inner self, true feelings and honest impression. This is especially true of one of the popular social media platforms, Twitter. This paper explores the possibility of predicting the occurrence of depression in individuals through posts made. The results of the data pre-processing will be displayed through data visualization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过社交媒体帖子识别抑郁症:推文数据可视化的数据预处理
如今,心理健康可以被定义为一个主要关注的问题,与许多运动的出现有关,以保持身体健康,从可能被忽视的方面提高认识。因此,恶化的迹象并不总是显而易见的。因此,社交媒体是一个安全的空间,许多人经常在这里分享他们内心的自我,真实的感受和诚实的印象。对于流行的社交媒体平台之一Twitter来说尤其如此。本文探讨了通过帖子预测个体抑郁发生的可能性。数据预处理的结果将通过数据可视化技术显示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk Analysis and Mitigation in Supply Chain Fashion Company Image Steganography Using Steg with AES and LSB National Resilience Index Model and Public Policy Simulation Analysis Of Road Geometric Standards In Hilling Areas Using Bim Mini UAV Orientation Control based on Face Tracking Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1