Radiomics and Machine Learning for Skeletal Muscle Injury Recovery Prediction

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2023-11-01 DOI:10.1109/TRPMS.2023.3291848
Vasileios Eleftheriadis, José Raul Herance Camacho, Valentina Paneta, B. Paun, Carolina Aparicio, Vanesa Venegas, Mario Marotta, M. Masa, G. Loudos, P. Papadimitroulas
{"title":"Radiomics and Machine Learning for Skeletal Muscle Injury Recovery Prediction","authors":"Vasileios Eleftheriadis, José Raul Herance Camacho, Valentina Paneta, B. Paun, Carolina Aparicio, Vanesa Venegas, Mario Marotta, M. Masa, G. Loudos, P. Papadimitroulas","doi":"10.1109/TRPMS.2023.3291848","DOIUrl":null,"url":null,"abstract":"Radiomics as a novel quantitative approach to medical imaging is an emerging area in the field of radiology. Artificial intelligence offers promising tools for exploiting and analyzing radiomics. The objective of the present study is to propose a methodology for the design, development, and evaluation of machine learning (ML) models for the prediction of the recovery progress of skeletal muscle injury over time in rats using radiomics. Radiomics were extracted from contrast enhanced computed tomography (CT) data and ML algorithms were trained and compared for their predictive value based on different CT imaging parameters. Ten different ML regression algorithms were tested and the optimal combination of radiomics for each algorithm and CT imaging parameter settings combination was studied. The best ensemble learning model, trained on the 70 kVp, 100 mA imaging parameter dataset, achieved a mean absolute error score of 1.22. The results suggest that radiomics extracted from CT images can be used as input in ML regression algorithms to predict the volume of a skeletal muscle injury in rats. Moreover, the results show that CT imaging settings impact the predictive performance of the ML regression models, indicating that lower values of tube current and peak kilovoltage contribute to more accurate predictions.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRPMS.2023.3291848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Radiomics as a novel quantitative approach to medical imaging is an emerging area in the field of radiology. Artificial intelligence offers promising tools for exploiting and analyzing radiomics. The objective of the present study is to propose a methodology for the design, development, and evaluation of machine learning (ML) models for the prediction of the recovery progress of skeletal muscle injury over time in rats using radiomics. Radiomics were extracted from contrast enhanced computed tomography (CT) data and ML algorithms were trained and compared for their predictive value based on different CT imaging parameters. Ten different ML regression algorithms were tested and the optimal combination of radiomics for each algorithm and CT imaging parameter settings combination was studied. The best ensemble learning model, trained on the 70 kVp, 100 mA imaging parameter dataset, achieved a mean absolute error score of 1.22. The results suggest that radiomics extracted from CT images can be used as input in ML regression algorithms to predict the volume of a skeletal muscle injury in rats. Moreover, the results show that CT imaging settings impact the predictive performance of the ML regression models, indicating that lower values of tube current and peak kilovoltage contribute to more accurate predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射组学和机器学习用于骨骼肌损伤恢复预测
放射组学作为一种新的医学影像定量方法,是放射学领域的一个新兴领域。人工智能为开发和分析放射组学提供了很有前途的工具。本研究的目的是提出一种设计、开发和评估机器学习(ML)模型的方法,用于使用放射组学预测大鼠骨骼肌损伤随时间的恢复过程。从对比增强计算机断层扫描(CT)数据中提取放射组学,训练ML算法并比较其基于不同CT成像参数的预测值。测试了10种不同的ML回归算法,并研究了每种算法的放射组学最佳组合和CT成像参数设置组合。在70 kVp, 100 mA成像参数数据集上训练的最佳集成学习模型的平均绝对误差得分为1.22。结果表明,从CT图像中提取的放射组学可以作为ML回归算法的输入来预测大鼠骨骼肌损伤的体积。此外,结果表明,CT成像设置影响ML回归模型的预测性能,表明较低的管电流和峰值千伏值有助于更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents Introducing IEEE Collabratec IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Member Get-a-Member (MGM) Program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1