Epigenetics Evolution and Replacement Histones: Evolutionary Changesat Drosophila H2AvD

Y. Matsuo
{"title":"Epigenetics Evolution and Replacement Histones: Evolutionary Changesat Drosophila H2AvD","authors":"Y. Matsuo","doi":"10.4172/2153-0602.1000207","DOIUrl":null,"url":null,"abstract":"The evolutionary changes in the Drosophila H2A and H2AvD genes, which encode histones, were analyzed using the sequences of 12 Drosophila sp. for understanding the evolution of histone replacement and epigenetics. The Ball gene, coding for a histone threonine kinase, was located head-to-head with the H2AvD gene in seven Drosophila sp. A strongly conserved DNA sequence was also found in the region upstream of the H2AvD gene; this sequence is most likely a transcriptional signal, because the sequence was also conserved in four other Drosophila sp. that did not have an upstream Ball gene. The SPARC gene, coding for a calcium-binding domain, was located tail-to-tail in the region downstream of the H2AvD gene in 11 Drosophila sp. studied. A moderately conserved DNA sequence was found in the H2AvD gene region at the splicing site in the first intron. Different codon usages for the H2A and H2AvD genes were found for 11 of 17 amino acids, and codon usages characteristic of replacement histones (H2AvD, H4r, H3.3A and H3.3B) were found for amino acids. Codon usage was considerably different at several histone modification sites in the H2A gene. These results suggested that unlike the H3.3 and H4r genes, not only post-transcriptional control, but also transcriptional control played a role in the H2AvD gene. In addition to post-transcriptional controls, such as splicing and translation, the development of a control system for transcription must have occurred during the evolution of histone replacement and epigenetic systems.","PeriodicalId":15630,"journal":{"name":"Journal of Data Mining in Genomics & Proteomics","volume":"95 8 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data Mining in Genomics & Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0602.1000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The evolutionary changes in the Drosophila H2A and H2AvD genes, which encode histones, were analyzed using the sequences of 12 Drosophila sp. for understanding the evolution of histone replacement and epigenetics. The Ball gene, coding for a histone threonine kinase, was located head-to-head with the H2AvD gene in seven Drosophila sp. A strongly conserved DNA sequence was also found in the region upstream of the H2AvD gene; this sequence is most likely a transcriptional signal, because the sequence was also conserved in four other Drosophila sp. that did not have an upstream Ball gene. The SPARC gene, coding for a calcium-binding domain, was located tail-to-tail in the region downstream of the H2AvD gene in 11 Drosophila sp. studied. A moderately conserved DNA sequence was found in the H2AvD gene region at the splicing site in the first intron. Different codon usages for the H2A and H2AvD genes were found for 11 of 17 amino acids, and codon usages characteristic of replacement histones (H2AvD, H4r, H3.3A and H3.3B) were found for amino acids. Codon usage was considerably different at several histone modification sites in the H2A gene. These results suggested that unlike the H3.3 and H4r genes, not only post-transcriptional control, but also transcriptional control played a role in the H2AvD gene. In addition to post-transcriptional controls, such as splicing and translation, the development of a control system for transcription must have occurred during the evolution of histone replacement and epigenetic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表观遗传学、进化和替代组蛋白:果蝇H2AvD的进化变化
利用12只果蝇的组蛋白编码基因H2A和H2AvD的序列,分析了组蛋白替代和表观遗传学的进化变化。在7只果蝇中,编码组蛋白苏氨酸激酶的Ball基因与H2AvD基因头部相连,在H2AvD基因上游区域也发现了一个高度保守的DNA序列;这个序列很可能是一个转录信号,因为这个序列在另外四个没有上游球基因的果蝇中也是保守的。在研究的11只果蝇中,编码钙结合域的SPARC基因位于H2AvD基因下游区域的尾尾相连。在第一个内含子剪接位点的H2AvD基因区域发现了一个中等保守的DNA序列。在17个氨基酸中,有11个发现H2A和H2AvD基因的密码子用法不同,氨基酸的密码子用法具有替代组蛋白(H2AvD、H4r、H3.3A和H3.3B)的特征。在H2A基因的几个组蛋白修饰位点上,密码子的使用有很大的不同。这些结果表明,与H3.3和H4r基因不同,H2AvD基因不仅发挥转录后调控的作用,还发挥转录调控的作用。除了剪接和翻译等转录后控制外,转录控制系统的发展一定发生在组蛋白替代和表观遗传系统的进化过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proteomics Study of the Effect Left Atrial Appendage Resection on theEnergy Metabolism of Atrial Muscle in Beagle Dogs with Rapid Atrial Pacing Expression of NUP62 in the Development of Ovarian Cancer Translocation (2; 5) (q37.3, q14q35.3) in a Case of Male Infertility in Cotonou Editorial on Bioinformatics Tools and Techniques for Data Mining Ribosomes: Atomic Machines Association between Nucleic acids and Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1