MODELLING AND LIGAND INTERACTION STUDIES OF ENDO-1,4-BETA-XYLANASE FROM BACILLUS SUBTILIS

Sreenath Konanki, J. Daddam, S. Anitha, M. Dowlathabad
{"title":"MODELLING AND LIGAND INTERACTION STUDIES OF ENDO-1,4-BETA-XYLANASE FROM BACILLUS SUBTILIS","authors":"Sreenath Konanki, J. Daddam, S. Anitha, M. Dowlathabad","doi":"10.13140/RG.2.2.30713.57442","DOIUrl":null,"url":null,"abstract":"Xylanase is the name given to a class of enzymes which degrade the linear polysaccharide beta-1,4- xylan into xylose, thus breaking down hemicellulose, which is a major component of the cell wall of plants. The sequence of Xylanase from Bacillus subtilis was obtained from NCBI. The predicted domain was searched to find out the related protein structure to be used as a template by the Basic Local Alignment Search Tool (BLAST) program against Protein Databank (PDB). Sequence that showed maximum identity with high score and less e-value was aligned and used as a reference structure to build a 3D model for Xylanase. In order to understand the mechanisms of ligand binding and the interaction between the ligand and the Xylanase a three-dimensional (3D) model of the Xylanase is generated based on the crystal structure of the Template by using the Modeller. With the aid of the molecular mechanics and molecular dynamics methods, the final refined model is obtained and is further assessed by Profile-3D, which shows that the refined model is reliable. With this model, a flexible docking study is performed with the acetate ion as ligand. After the docking studies, important determined residues in binding are identified. The hydrogen bonds play an important role for the stability of the complex. These results may be helpful for further experimental investigations.","PeriodicalId":22532,"journal":{"name":"The International Journal of Plant, Animal and Environmental Sciences","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Plant, Animal and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13140/RG.2.2.30713.57442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Xylanase is the name given to a class of enzymes which degrade the linear polysaccharide beta-1,4- xylan into xylose, thus breaking down hemicellulose, which is a major component of the cell wall of plants. The sequence of Xylanase from Bacillus subtilis was obtained from NCBI. The predicted domain was searched to find out the related protein structure to be used as a template by the Basic Local Alignment Search Tool (BLAST) program against Protein Databank (PDB). Sequence that showed maximum identity with high score and less e-value was aligned and used as a reference structure to build a 3D model for Xylanase. In order to understand the mechanisms of ligand binding and the interaction between the ligand and the Xylanase a three-dimensional (3D) model of the Xylanase is generated based on the crystal structure of the Template by using the Modeller. With the aid of the molecular mechanics and molecular dynamics methods, the final refined model is obtained and is further assessed by Profile-3D, which shows that the refined model is reliable. With this model, a flexible docking study is performed with the acetate ion as ligand. After the docking studies, important determined residues in binding are identified. The hydrogen bonds play an important role for the stability of the complex. These results may be helpful for further experimental investigations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枯草芽孢杆菌内生-1,4- β -木聚糖酶的建模和配体相互作用研究
木聚糖酶是一类酶的名称,它可以将线状多糖-1,4-木聚糖分解成木糖,从而分解半纤维素,而半纤维素是植物细胞壁的主要成分。从NCBI中获得枯草芽孢杆菌木聚糖酶的序列。利用BLAST (Basic Local Alignment Search Tool)程序对预测结构域进行检索,找出相关的蛋白结构作为模板。选取同源性最大、e值越高、e值越小的序列作为参考结构,建立木聚糖酶的三维模型。为了了解配体结合的机制以及配体与木聚糖酶之间的相互作用,利用modeler基于模板的晶体结构生成了木聚糖酶的三维(3D)模型。借助分子力学和分子动力学方法,得到了最终的精化模型,并通过Profile-3D进行了进一步的评估,结果表明精化模型是可靠的。利用该模型,以醋酸离子为配体进行了柔性对接研究。在对接研究之后,确定了结合中重要的确定残基。氢键对配合物的稳定性起着重要的作用。这些结果可能对进一步的实验研究有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Species Composition, Abundance and Population Structure of Indoor Resting Mosquitoes in Two Villages of Sudan Genetic Diversity of Eristalis Tenax (Linnaeus, 1758) as Insect Pollinator of Prunus Persica (L.) Stokes Flowers Based on MtcoⅠ Gene Note on Ceropegia attenuata Hook. From Western Ghats, India Dynamic Connectedness and Hedging Opportunity Nexus between Clean Energy, Crude Oil and Technology Sector Inference from Open-Source Sequence Data on the Genetic Epidemiology of COVID-19 Infection in Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1