GPS navigation processing using the IMM-based EKF

Dah-Jing Jwo, Chien-Hao Tseng
{"title":"GPS navigation processing using the IMM-based EKF","authors":"Dah-Jing Jwo, Chien-Hao Tseng","doi":"10.1109/ICSENST.2008.4757174","DOIUrl":null,"url":null,"abstract":"This paper presents an interacting multiple model (IMM)-based extended Kalman filter (EKF) approach for the Global Positioning System (GPS) navigation processing. The well-known extended Kalman filter has been widely applied to the GPS navigation processing. The ldquosoft-switchingrdquo IMM estimator obtains its estimate as a weighted sum of the individual estimates from a number of parallel filters matched to different motion modes of the platform. The IMM estimators can substantially improve navigation accuracy during vehicle maneuvering (such as circular motion and acceleration) as well as during constant velocity straight-line motion over the conventional EKF. Simulation results show that the IMM-based EKF outperforms the single model EKF in navigation estimation accuracy.","PeriodicalId":6299,"journal":{"name":"2008 3rd International Conference on Sensing Technology","volume":"17 1","pages":"589-594"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Sensing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2008.4757174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents an interacting multiple model (IMM)-based extended Kalman filter (EKF) approach for the Global Positioning System (GPS) navigation processing. The well-known extended Kalman filter has been widely applied to the GPS navigation processing. The ldquosoft-switchingrdquo IMM estimator obtains its estimate as a weighted sum of the individual estimates from a number of parallel filters matched to different motion modes of the platform. The IMM estimators can substantially improve navigation accuracy during vehicle maneuvering (such as circular motion and acceleration) as well as during constant velocity straight-line motion over the conventional EKF. Simulation results show that the IMM-based EKF outperforms the single model EKF in navigation estimation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于im EKF的GPS导航处理
提出了一种基于交互多模型(IMM)的扩展卡尔曼滤波(EKF)方法,用于全球定位系统(GPS)导航处理。扩展卡尔曼滤波在GPS导航处理中得到了广泛的应用。ldquosoft- switchgrdquo IMM估计器将多个匹配平台不同运动模式的并行滤波器的估计值加权求和。IMM估计器可以大大提高车辆机动(如圆周运动和加速)以及常规EKF上等速直线运动期间的导航精度。仿真结果表明,基于imm的EKF在导航估计精度上优于单模型EKF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and characterization of CuO nanoparticle: Its electrochemical paracetamol sensor activity and substituted-2-aminothiophene synthesis applications Electrochemical-sensor, antimicrobial and Environmental Assessments of Bi 3+ :Mg (1− x) Zr x O 4 NPs synthesized by bio-mediated combustion method CeO2/ZnO nanocomposite-modified glassy carbon electrode as an enhanced sensing platform for sensitive voltammetric determination of norepinephrine Mechanical and corrosion properties of electrochemically deposited Ni-Nb2O5 composite coatings on mild steel for marine Applications Voltammetric analysis of hazardous azo-dye indigo carmine at simple and cost-effective carbon paste sensor modified with L-phenylalanine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1