Conventional ARX and Artificial Neural networks ARX models for prediction of oil consumption in Malaysia

I. Awaludin, R. Ibrahim, K. S. Rama Rao
{"title":"Conventional ARX and Artificial Neural networks ARX models for prediction of oil consumption in Malaysia","authors":"I. Awaludin, R. Ibrahim, K. S. Rama Rao","doi":"10.1109/ISIEA.2009.5356496","DOIUrl":null,"url":null,"abstract":"This study investigates prediction of oil consumption in Malaysia. Models of oil consumption are developed and validated with respect to training and validation dataset. Available data for Malaysia is annual data from 1982 to 2006 comprises Population, GDP per Capita, and Oil Consumption data. Prediction time target is year 2020 which is commonly used by several energy outlook reports. Two models are developed in this study, conventional Autoregressive Exogenous (ARX) model and Artificial Neural Network ARX (ANN ARX) model. The difference lies on how those models work to find unknown parameters based on training dataset. Conventional model uses Least Square method to calculate the unknown parameter where ANN ARX model uses weight updating strategy to find the unknown parameter. Performance of each model is measured through Root Mean Square Error (RMSE) value. It is shown that ANN ARX model can perform better than conventional ARX especially with small number of training dataset.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"14 1","pages":"23-28"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study investigates prediction of oil consumption in Malaysia. Models of oil consumption are developed and validated with respect to training and validation dataset. Available data for Malaysia is annual data from 1982 to 2006 comprises Population, GDP per Capita, and Oil Consumption data. Prediction time target is year 2020 which is commonly used by several energy outlook reports. Two models are developed in this study, conventional Autoregressive Exogenous (ARX) model and Artificial Neural Network ARX (ANN ARX) model. The difference lies on how those models work to find unknown parameters based on training dataset. Conventional model uses Least Square method to calculate the unknown parameter where ANN ARX model uses weight updating strategy to find the unknown parameter. Performance of each model is measured through Root Mean Square Error (RMSE) value. It is shown that ANN ARX model can perform better than conventional ARX especially with small number of training dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传统ARX和人工神经网络ARX模型预测马来西亚石油消费量
本研究调查预测石油消费在马来西亚。根据训练和验证数据集开发和验证石油消耗模型。马来西亚的可用数据是1982年至2006年的年度数据,包括人口、人均国内生产总值和石油消费数据。预测时间目标为2020年,这是几份能源展望报告常用的时间目标。本文建立了传统的自回归外生(ARX)模型和人工神经网络ARX (ANN ARX)模型。不同之处在于这些模型如何根据训练数据集找到未知参数。传统模型采用最小二乘法计算未知参数,ANN ARX模型采用权值更新策略寻找未知参数。每个模型的性能通过均方根误差(RMSE)值来衡量。结果表明,在训练数据较少的情况下,ANN ARX模型的性能优于传统的ARX模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control Application and evaluation of high power Zigbee based wireless sensor network in water irrigation control monitoring system Efficiency performance analysis of Series Loaded Resonant converter Parallel distributed compensation based robust fuzzy control A new Shifted Scaled LS channel estimator for Rician flat fading MIMO channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1