EXPOSURE OF THE LOAD CAPACITY OF THE RC STRUCTURAL SYSTEM UNDER CORROSION DAMAGE TO COLUMNS

{"title":"EXPOSURE OF THE LOAD CAPACITY OF THE RC STRUCTURAL SYSTEM UNDER CORROSION DAMAGE TO COLUMNS","authors":"","doi":"10.5937/jaes0-40956","DOIUrl":null,"url":null,"abstract":"A number of accidents, such as the partial collapse of a residential building in Surfside on June 24, 2021, or the collapse of the roof structure of Basmanny Market in Moscow on February 23, 2006, show that aggressive medium impacts on reinforced concrete structures lead over time to a decrease in their strength resistance resource under accidental impacts. At the same time, the investigations in this field mainly deal with structural members under bending, while eccentrically compressed and corroded reinforced concrete members have been considered either in particular aspects or the obtained solutions are rather complicated for their practical application. In this regard, the purpose of the article was to assess the influence of the corroded depth on the load capacity of eccentrically compressed reinforced concrete columns of structural frames, as well as to predict the time of exhaustion of their load capacity under constant serviceable loads. The paper adopted the phenomenological model of V.M. Bondarenko to take into account long-term corrosion processes. It had been established that an increase in the corroded depth leads to a decrease in the load capacity of eccentrically compressed reinforced concrete members due to a decrease in the effective cross-sectional depth and effective slenderness ratio. The relative depth of the destroyed concrete varies depending on the current stress-strain state of the structural member. The time to reach the critical corroded depth depends significantly on the parameters of aggressive medium and the stress-strain state of the structural member and may differ by several times when implementing avalanche or descending damage kinetics.","PeriodicalId":35468,"journal":{"name":"Journal of Applied Engineering Science","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/jaes0-40956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A number of accidents, such as the partial collapse of a residential building in Surfside on June 24, 2021, or the collapse of the roof structure of Basmanny Market in Moscow on February 23, 2006, show that aggressive medium impacts on reinforced concrete structures lead over time to a decrease in their strength resistance resource under accidental impacts. At the same time, the investigations in this field mainly deal with structural members under bending, while eccentrically compressed and corroded reinforced concrete members have been considered either in particular aspects or the obtained solutions are rather complicated for their practical application. In this regard, the purpose of the article was to assess the influence of the corroded depth on the load capacity of eccentrically compressed reinforced concrete columns of structural frames, as well as to predict the time of exhaustion of their load capacity under constant serviceable loads. The paper adopted the phenomenological model of V.M. Bondarenko to take into account long-term corrosion processes. It had been established that an increase in the corroded depth leads to a decrease in the load capacity of eccentrically compressed reinforced concrete members due to a decrease in the effective cross-sectional depth and effective slenderness ratio. The relative depth of the destroyed concrete varies depending on the current stress-strain state of the structural member. The time to reach the critical corroded depth depends significantly on the parameters of aggressive medium and the stress-strain state of the structural member and may differ by several times when implementing avalanche or descending damage kinetics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢筋混凝土结构体系在柱腐蚀损伤下的承载能力暴露
一系列事故,如2021年6月24日在Surfside的住宅建筑部分倒塌,或2006年2月23日在莫斯科Basmanny市场的屋顶结构倒塌,都表明,随着时间的推移,剧烈的介质冲击会导致钢筋混凝土结构在意外冲击下的强度抵抗资源减少。同时,这一领域的研究主要针对受弯构件,而钢筋混凝土构件偏心受压和腐蚀问题的研究或侧重于某些方面,或因实际应用而得到的解决方案较为复杂。因此,本文的目的是评估腐蚀深度对结构框架偏心受压钢筋混凝土柱承载能力的影响,并预测其在恒定使用荷载下的承载能力耗尽时间。本文采用了V.M. Bondarenko的现象学模型来考虑长期腐蚀过程。结果表明,随着腐蚀深度的增加,偏心受压钢筋混凝土构件的承载能力下降,主要是由于有效截面深度和有效长细比的减小。破坏混凝土的相对深度取决于构件当前的应力-应变状态。达到临界腐蚀深度的时间在很大程度上取决于侵蚀介质的参数和结构构件的应力-应变状态,并且在实施雪崩或下降损伤动力学时可能相差数倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Engineering Science
Journal of Applied Engineering Science Engineering-Engineering (all)
CiteScore
2.00
自引率
0.00%
发文量
122
审稿时长
12 weeks
期刊介绍: Since 2002 iipp build cooperation with its clients established on wealthy experience, interchangeable respect and trust and permanently arrangement with the purpose of successfully realization of projects recognizable according to good organization and high quality of provided favors. Working as unique team of highly motivated experts, Institute iipp provides to its customers the most high-quality solutions in domain of engineering consulting.
期刊最新文献
SIMULATION MODELING OF LOGGING HARVESTER MOVEMENTS DURING SELECTIVE LOGGING RISK MITIGATION AS A MEDIATING FACTOR IN THE RELATIONSHIP BETWEEN TOP MANAGEMENT SUPPORT AND CONSTRUCTION PROJECT PERFORMANCE 3D DOCUMENTATION OF CULTURAL HERITAGE USING TERRESTRIAL LASER SCANNING ROAD TRAFFIC ACCIDENTS FACTOR ON RURAL ARTERIAL ROADS RESTORATION OF LARGE MODULAR TEETH OF BALL MILL GEARS BY ELECTRO-SLAG SURFACE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1