{"title":"Morphology control of copper nanomaterials for IC bonding","authors":"J. Wen, Yanhong Tian, Zhi Jiang","doi":"10.1109/CSTIC.2017.7919863","DOIUrl":null,"url":null,"abstract":"Copper nanoparticles paste was prepared as inconnection materials of power electronics using potassium borohydride (KBH4) as reduction. Various influences on the morpholorgy of copper nanoparticles were discussed, such as reaction time, concentration of precursor ([Cu(NH3)4]SO4) or reducing agent (KBH4) and surfactant (polyvinyl pyrrolidone, PVP). Meanwhile, those influence to preparing pure copper nanomaterials, the growth process and phase evolution of copper nanomaterials were discussed. Some new conclusions about controlling the morphology of copper nanowires were drawn about reaction time and reaction temperature. This simple and feasible method of preparing nanomaterials are not limited to devices bonging, which have applications in printing electronics, transparent conducting films and even smart electronics.","PeriodicalId":6846,"journal":{"name":"2017 China Semiconductor Technology International Conference (CSTIC)","volume":"13 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2017.7919863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Copper nanoparticles paste was prepared as inconnection materials of power electronics using potassium borohydride (KBH4) as reduction. Various influences on the morpholorgy of copper nanoparticles were discussed, such as reaction time, concentration of precursor ([Cu(NH3)4]SO4) or reducing agent (KBH4) and surfactant (polyvinyl pyrrolidone, PVP). Meanwhile, those influence to preparing pure copper nanomaterials, the growth process and phase evolution of copper nanomaterials were discussed. Some new conclusions about controlling the morphology of copper nanowires were drawn about reaction time and reaction temperature. This simple and feasible method of preparing nanomaterials are not limited to devices bonging, which have applications in printing electronics, transparent conducting films and even smart electronics.