A Concise Review on the Significance of QSAR in Drug Design

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2019-12-27 DOI:10.11648/J.CBE.20190404.11
H. Tandon, T. Chakraborty, V. Suhag
{"title":"A Concise Review on the Significance of QSAR in Drug Design","authors":"H. Tandon, T. Chakraborty, V. Suhag","doi":"10.11648/J.CBE.20190404.11","DOIUrl":null,"url":null,"abstract":"Drug designing is a crucial step in the exploration of novel drugs which requires potent methodologies. One of such methodologies is Quantitative Structure Activity Relationship (QSAR) which is a widely used statistical tool that correlates the structure of a molecule to a biological activity as a function of molecular descriptors, thereby, playing an essential role in the drug designing. QSAR utilizes Density Functional Theory (DFT) based chemical descriptors for this purpose. The selection of such significant molecular descriptors from various available descriptors is the foremost challenge in a QSAR as structural descriptors are representative of the molecular characteristics accountable for the relevant activity. Recently, new QSAR approaches have been introduced which further enhance the study of the activities. Further, the constructed QSAR models also need to be tested and validated for their efficiency and practical usage. As the QSAR models are structure specific, they may not be universally applicable. However, because of their high precision and efficacy, they have a promising future in the world of drug design. This review briefly summarizes the role of descriptor based QSAR in drug design in conjunction with existing QSAR approaches and also the utility as well as constraints of this approach in drug design.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"7 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.11648/J.CBE.20190404.11","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 12

Abstract

Drug designing is a crucial step in the exploration of novel drugs which requires potent methodologies. One of such methodologies is Quantitative Structure Activity Relationship (QSAR) which is a widely used statistical tool that correlates the structure of a molecule to a biological activity as a function of molecular descriptors, thereby, playing an essential role in the drug designing. QSAR utilizes Density Functional Theory (DFT) based chemical descriptors for this purpose. The selection of such significant molecular descriptors from various available descriptors is the foremost challenge in a QSAR as structural descriptors are representative of the molecular characteristics accountable for the relevant activity. Recently, new QSAR approaches have been introduced which further enhance the study of the activities. Further, the constructed QSAR models also need to be tested and validated for their efficiency and practical usage. As the QSAR models are structure specific, they may not be universally applicable. However, because of their high precision and efficacy, they have a promising future in the world of drug design. This review briefly summarizes the role of descriptor based QSAR in drug design in conjunction with existing QSAR approaches and also the utility as well as constraints of this approach in drug design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简要综述QSAR在药物设计中的意义
药物设计是新药开发的关键一步,需要强有力的方法。其中一种方法是定量结构活性关系(QSAR),这是一种广泛使用的统计工具,它将分子结构与生物活性作为分子描述符的功能联系起来,因此在药物设计中起着至关重要的作用。QSAR利用密度泛函理论(DFT)为基础的化学描述符为这一目的。从各种可用的描述符中选择如此重要的分子描述符是QSAR中的首要挑战,因为结构描述符代表了负责相关活性的分子特征。最近,新的QSAR方法被引入,进一步加强了对活动的研究。此外,所构建的QSAR模型还需要对其有效性和实用性进行测试和验证。由于QSAR模型是特定于结构的,它们可能不是普遍适用的。然而,由于其高精度和高效性,在药物设计领域有着广阔的发展前景。本文简要总结了基于描述符的QSAR在药物设计中的作用,并结合现有的QSAR方法,以及该方法在药物设计中的效用和限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction. Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. Fluid Ejections in Nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1