J. Oostvogels, F. Yang, Sam Michiels, W. Joosen, D. Hughes
{"title":"Zero-Wire","authors":"J. Oostvogels, F. Yang, Sam Michiels, W. Joosen, D. Hughes","doi":"10.1145/3471440.3471450","DOIUrl":null,"url":null,"abstract":"Latency-sensitive applications for the Internet of Things (IoT) often require performance guarantees that contemporary wireless networks fail to offer. Application scenarios involving real-time control of industrial machinery, robotics, or delay-sensitive actuation therefore typically still rely on cables: today's wireless networks cannot deliver messages in a sufficiently small and predictable amount of time. Drop-in wireless replacements for these cabled systems would nevertheless provide great benefit by eliminating the high cost and complexity associated with running cables in harsh industrial environments [1]. The symbolsynchronous bus, introduced in this article and embodied in a platform called Zero-Wire, is a novel wireless networking paradigm that addresses this gap. Using concurrent optical transmissions, it strives to bring low-latency deterministic networking to the wireless IoT.","PeriodicalId":29918,"journal":{"name":"GetMobile-Mobile Computing & Communications Review","volume":"13 1","pages":"34 - 38"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile-Mobile Computing & Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3471440.3471450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Latency-sensitive applications for the Internet of Things (IoT) often require performance guarantees that contemporary wireless networks fail to offer. Application scenarios involving real-time control of industrial machinery, robotics, or delay-sensitive actuation therefore typically still rely on cables: today's wireless networks cannot deliver messages in a sufficiently small and predictable amount of time. Drop-in wireless replacements for these cabled systems would nevertheless provide great benefit by eliminating the high cost and complexity associated with running cables in harsh industrial environments [1]. The symbolsynchronous bus, introduced in this article and embodied in a platform called Zero-Wire, is a novel wireless networking paradigm that addresses this gap. Using concurrent optical transmissions, it strives to bring low-latency deterministic networking to the wireless IoT.