A comparative study for the main properties of silica and carbon black Filled bagasse-styrene butadiene rubber composites

Eyad Sayed Abdallah Khalaf
{"title":"A comparative study for the main properties of silica and carbon black Filled bagasse-styrene butadiene rubber composites","authors":"Eyad Sayed Abdallah Khalaf","doi":"10.1177/09673911231171035","DOIUrl":null,"url":null,"abstract":"A comparative study has been done to investigate the effect of carbon black (CB) and fumed silica (Si) on the physico-mechanical and thermal properties of Bagasse/styrene-butadiene rubber (B-SBR) composites. Based on the incorporation of 25 phr from natural ground bagasse powder (GBP) as a supplement reinforcing filler in styrene butadiene rubber (SBR) vulcanizates, two identical sets of formulations have been prepared using different concentrations (20, 40, 60 and 80 phr) of carbon black and silica as the main reinforcing fillers in SBR composites. The ground bagasse powder (GBP) employed in this work, has a selective grain size distribution ranging from about 20–180 μm. As well, 2.5 phr of maleic anhydride (MA) was incorporated to improve the interfacial adhesion between SBR and bagasse. The distinguishing effect of different fillers on the rheological properties was clearly established. Tensile strength, elongation at break, modulus at 100% elongation (M 100), hardness (Shore A), abrasion loss, degree of swelling, as well as, thermal gravimetric analysis (TGA) of the rubber vulcanizates were studied. The prepared samples were morphologically analysed by scanning electron microscopy (SEM). The tensile strength and M 100% values of carbon black-filled compounds were obviously higher than those of the silica filled ones. In addition, hardness, wear and swelling properties were improved more and more by increasing the filler content. Whereas, the Si filled B/SBR showed a decreasing trend in elongation at break values but with an evidently higher plateau than that of CB filled ones. Overall, the CB filled vulcanizates recorded dominant mechanical properties compared to the Si filled vucanizates. On the other hand, both fillers offered a noticeable improvement in thermal stability, but with a preference favored for the silica filled compounds. Furthermore, the findings for SEM were found to be in agreement with the observed mechanical properties. This study summarizes a detailed discussion of the emerging green technologies for tyre production and depicted comprehensive data from the available literature.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231171035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A comparative study has been done to investigate the effect of carbon black (CB) and fumed silica (Si) on the physico-mechanical and thermal properties of Bagasse/styrene-butadiene rubber (B-SBR) composites. Based on the incorporation of 25 phr from natural ground bagasse powder (GBP) as a supplement reinforcing filler in styrene butadiene rubber (SBR) vulcanizates, two identical sets of formulations have been prepared using different concentrations (20, 40, 60 and 80 phr) of carbon black and silica as the main reinforcing fillers in SBR composites. The ground bagasse powder (GBP) employed in this work, has a selective grain size distribution ranging from about 20–180 μm. As well, 2.5 phr of maleic anhydride (MA) was incorporated to improve the interfacial adhesion between SBR and bagasse. The distinguishing effect of different fillers on the rheological properties was clearly established. Tensile strength, elongation at break, modulus at 100% elongation (M 100), hardness (Shore A), abrasion loss, degree of swelling, as well as, thermal gravimetric analysis (TGA) of the rubber vulcanizates were studied. The prepared samples were morphologically analysed by scanning electron microscopy (SEM). The tensile strength and M 100% values of carbon black-filled compounds were obviously higher than those of the silica filled ones. In addition, hardness, wear and swelling properties were improved more and more by increasing the filler content. Whereas, the Si filled B/SBR showed a decreasing trend in elongation at break values but with an evidently higher plateau than that of CB filled ones. Overall, the CB filled vulcanizates recorded dominant mechanical properties compared to the Si filled vucanizates. On the other hand, both fillers offered a noticeable improvement in thermal stability, but with a preference favored for the silica filled compounds. Furthermore, the findings for SEM were found to be in agreement with the observed mechanical properties. This study summarizes a detailed discussion of the emerging green technologies for tyre production and depicted comprehensive data from the available literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化硅与炭黑填充甘蔗渣-丁苯橡胶复合材料主要性能的比较研究
对比研究了炭黑(CB)和气相二氧化硅(Si)对甘蔗渣/丁苯橡胶(B-SBR)复合材料物理力学性能和热性能的影响。以天然蔗渣粉(GBP)为补强填料,添加25 phr的天然蔗渣粉(GBP)为补强填料,以不同浓度(20、40、60和80 phr)的炭黑和二氧化硅为补强填料,制备了两套完全相同的配方。研究中使用的甘蔗渣粉(GBP)具有20 ~ 180 μm的选择性粒度分布。同时,加入2.5 phr的马来酸酐(MA)可以改善SBR与甘蔗渣之间的界面附着力。明确了不同填料对其流变性能的区别作用。研究了硫化橡胶的抗拉强度、断裂伸长率、100%伸长量(m100)、硬度(Shore A)、磨损损失、膨胀度以及热重分析(TGA)。用扫描电镜对制备的样品进行了形貌分析。炭黑填充化合物的抗拉强度和m100%值明显高于二氧化硅填充化合物。此外,随着填料含量的增加,合金的硬度、耐磨性和溶胀性都得到了越来越大的改善。而Si填充的B/SBR的断裂伸长率呈下降趋势,但其平台值明显高于CB填充的B/SBR。总的来说,炭黑填充的硫化胶的力学性能优于硅填充的硫化胶。另一方面,两种填料在热稳定性方面都有明显的改善,但对二氧化硅填充的化合物更有利。此外,SEM的结果与观察到的力学性能一致。本研究总结了轮胎生产新兴绿色技术的详细讨论,并从现有文献中描述了全面的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and characterising FFF process of semi-crystalline polymers: Warpage formation and mechanism analysis Machine learning non-isothermal study of the blade coating process (NIS-BCP) using non-Newtonian nanofluid with magnetohydrodynamic (MHD) and slip effects Performance of polyurethane and polyurethane nanocomposites modified by graphene, carbon nanotubes, and fumed silica in dry and wet environments Effect of hybrid weaving patterns on mechanical performance of 3D woven structures Investigation of effects of bis(2-hydroxyethyl) terephthalate derived from glycolysis of polyethylene terephthalate on the properties of flexible polyurethane foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1